Lösung Winkel am Einheitskreis

Zuletzt geändert von akukin am 2025/08/14 16:28

Winkel \(\alpha\)30°60°90°120°150°180°210°240°270°300°330°360°
\(\sin(\alpha)\)
\(\frac{1}{2}\)

\(\frac{\sqrt{3}}{2}\)

\(1\)

\(\frac{\sqrt{3}}{2}\)

\(\frac{1}{2}\)

\(0\)

\(-\frac{1}{2}\)

\(-\frac{\sqrt{3}}{2}\)

\(-1\)

\(-\frac{\sqrt{3}}{2}\)

\(-\frac{1}{2}\)

\(0\)
\(\cos(\alpha)\)
\(\frac{\sqrt{3}}{2}\)

\(\frac{1}{2}\)

\(0\)

\(-\frac{1}{2}\)

\(-\frac{\sqrt{3}}{2}\)

\(-1\)

\(-\frac{\sqrt{3}}{2}\)

\(-\frac{1}{2}\)

\(0\)

\(\frac{1}{2}\)

\(\frac{\sqrt{3}}{2}\)

\(1\)

Einheitskreis_winkel.png

zu 2.

\(\sin(360 + \beta) = \sin(\beta)\) bzw. \(\cos(360 + \beta)=\cos(\beta)\)