Änderungen von Dokument BPE 12.2 Ableitungsfunktion und Ableiten
Zuletzt geändert von Holger Engels am 2025/10/14 08:18
Von Version 13.1
bearbeitet von Martina Wagner
am 2025/10/13 12:31
am 2025/10/13 12:31
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von Holger Engels
am 2025/10/13 14:46
am 2025/10/13 14:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. martinawagner1 +XWiki.holgerengels - Inhalt
-
... ... @@ -2,8 +2,16 @@ 2 2 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die Bedeutung der Eulerschen Zahl //e// als besondere Basis bei Exponentialfunktionen zur Berechnung ihrer Ableitung nennen 3 3 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben 4 4 5 +{{aufgabe id="eFunktion" afb="" kompetenzen="" quelle="" zeit="" cc="by-sa" tags=""}} 6 +Zeichne die e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne genau darunter ein Koordinatensystem mit der Ableitungsfunktion {{formula}}f'(x){{/formula}}, deren Werte durch grafisches Differenzieren an mindestens 5 Stellen ermittelt werden. Beschreibe dein Ergebnis und finde eine Lösung für den Term der Ableitungsfunktion. 7 +{{/aufgabe}} 5 5 6 -{{aufgabe id="Verschiebung durch Ableiten" afb="2" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}} 9 +{{aufgabe id="Trigonometrische Funktionen" afb="" kompetenzen="" quelle="" zeit="" cc="by-sa" tags=""}} 10 +Zeichne die sinus-Funktion {{formula}}f(x)=sin(x){{/formula}} im Intervall {{formula}}[-2\PI();2\PI()]{{/formula}}. Zeichne genau darunter ein Koordinatensystem mit der Ableitungsfunktion {{formula}}f'(x){{/formula}}, deren Werte durch geschicktes grafisches Differenzieren ermittelt werden. Beschreibe dein Ergebnis und finde eine Lösung für den Term der Ableitungsfunktion. 11 +Was gilt analog für {{formula}}f(x)=cos(x){{/formula}}, {{formula}}f(x)=-sin(x){{/formula}} und {{formula}}f(x)=-cos(x){{/formula}}? 12 +{{/aufgabe}} 13 + 14 +{{aufgabe id="Verschiebung durch Ableiten" afb="3" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}} 7 7 Die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} hat die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} mit {{formula}}f^\prime\left(x\right)=2\cdot e^{2x}{{/formula}} und es gilt {{formula}}f\left(0\right)=1{{/formula}}. 8 8 9 9 Leitet man die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} ab, so erhält man die zweite Ableitungsfunktion {{formula}}f^{\prime\prime}{{/formula}} von {{formula}}f{{/formula}}. Entsprechend entsteht die hundertste Ableitung {{formula}}f^{\left(100\right)}{{/formula}} von {{formula}}f{{/formula}}. Der Graph der hundersten Ableitungsfunktion {{formula}}f^{\left(100\right)}{{/formula}} lässt sich aus dem Graphen von {{formula}}f{{/formula}} durch eine Verschiebung in x-Richtung erzeugen.