Änderungen von Dokument BPE 12.2 Ableitungsfunktion und Ableiten
Zuletzt geändert von Holger Engels am 2025/10/14 08:18
Von Version 20.1
bearbeitet von Holger Engels
am 2025/10/13 14:47
am 2025/10/13 14:47
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. holgerengels1 +XWiki.akukin - Inhalt
-
... ... @@ -1,17 +1,9 @@ 1 1 [[Kompetenzen.K4]] Ich kann ausgehend vom grafischen Differenzieren, Ableitungen für ausgewählte Funktionen bestimmen 2 2 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die Bedeutung der Eulerschen Zahl //e// als besondere Basis bei Exponentialfunktionen zur Berechnung ihrer Ableitung nennen 3 -[[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben 3 +[[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann die den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben 4 4 5 -{{aufgabe id="eFunktion" afb="" kompetenzen="" quelle="" zeit="" cc="by-sa" tags=""}} 6 -Zeichne die e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne genau darunter ein Koordinatensystem mit der Ableitungsfunktion {{formula}}f'(x){{/formula}}, deren Werte durch grafisches Differenzieren an mindestens 5 Stellen ermittelt werden. Beschreibe dein Ergebnis und finde eine Lösung für den Term der Ableitungsfunktion. 7 -{{/aufgabe}} 8 8 9 -{{aufgabe id="Trigonometrische Funktionen" afb="" kompetenzen="" quelle="" zeit="" cc="by-sa" tags=""}} 10 -Zeichne die sinus-Funktion {{formula}}f(x)=sin(x){{/formula}} im Intervall {{formula}}[-2 /pi;2 /pi]{{/formula}}. Zeichne genau darunter ein Koordinatensystem mit der Ableitungsfunktion {{formula}}f'(x){{/formula}}, deren Werte durch geschicktes grafisches Differenzieren ermittelt werden. Beschreibe dein Ergebnis und finde eine Lösung für den Term der Ableitungsfunktion. 11 -Was gilt analog für {{formula}}f(x)=cos(x){{/formula}}, {{formula}}f(x)=-sin(x){{/formula}} und {{formula}}f(x)=-cos(x){{/formula}}? 12 -{{/aufgabe}} 13 - 14 -{{aufgabe id="Verschiebung durch Ableiten" afb="3" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}} 6 +{{aufgabe id="Verschiebung durch Ableiten" afb="" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}} 15 15 Die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} hat die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} mit {{formula}}f^\prime\left(x\right)=2\cdot e^{2x}{{/formula}} und es gilt {{formula}}f\left(0\right)=1{{/formula}}. 16 16 17 17 Leitet man die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} ab, so erhält man die zweite Ableitungsfunktion {{formula}}f^{\prime\prime}{{/formula}} von {{formula}}f{{/formula}}. Entsprechend entsteht die hundertste Ableitung {{formula}}f^{\left(100\right)}{{/formula}} von {{formula}}f{{/formula}}. Der Graph der hundersten Ableitungsfunktion {{formula}}f^{\left(100\right)}{{/formula}} lässt sich aus dem Graphen von {{formula}}f{{/formula}} durch eine Verschiebung in x-Richtung erzeugen. ... ... @@ -22,7 +22,7 @@ 22 22 23 23 {{aufgabe id="Ableitung berechnen und grafisch ermitteln" afb="" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_2.pdf]]" niveau="g" tags="iqb" cc="by"}} 24 24 Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}g{{/formula}} mit {{formula}}g\left(x\right)=2\cdot e^x-2{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}h\left(x\right)=e^x+1{{/formula}}. Die Abbildung zeigt ihre Graphen. 25 - [[image:Graphen2exp(x)-2.png||width="180"style="float:right"]]17 + 26 26 1. Die erste Ableitungsfunktion von {{formula}}g{{/formula}} wird mit {{formula}}g^\prime{{/formula}} bezeichnet. Berechne {{formula}}g^\prime\left(0\right){{/formula}} und veranschauliche in der Abbildung, wie man diesen Wert grafisch ermitteln kann. 27 27 1. Beurteile folgende Aussage: 28 28 Es gibt eine Verschiebung in y-Richtung, durch die der Graph von {{formula}}h{{/formula}} aus dem Graphen von {{formula}}g{{/formula}} erzeugt werden kann.