Zuletzt geändert von Holger Engels am 2025/12/07 21:47

Von Version 32.2
bearbeitet von Holger Engels
am 2025/12/07 21:47
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 30.1
bearbeitet von Holger Engels
am 2025/11/15 17:54
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,11 +3,11 @@
3 3  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben
4 4  
5 5  {{aufgabe id="eFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="7" cc="by-sa" tags=""}}
6 -Zeichne den Graphen der e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-2;2]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
6 +Zeichne den Graphen der e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
7 7  {{/aufgabe}}
8 8  
9 9  {{aufgabe id="expFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels" zeit="7" cc="by-sa" tags=""}}
10 -Zeichne den Graphen der e-Funktion {{formula}}f(x)=2^x{{/formula}} im Intervall {{formula}}[-2;2]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis.
10 +Zeichne den Graphen der e-Funktion {{formula}}f(x)=2^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis.
11 11  {{/aufgabe}}
12 12  
13 13  {{aufgabe id="Trigonometrische Funktionen" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="8" cc="by-sa" tags=""}}
... ... @@ -15,13 +15,17 @@
15 15  Beschreibe ein analoges Vorgehen für {{formula}}f_2(x)=cos(x){{/formula}} und gib auch den Term für {{formula}}f'_2(x){{/formula}} an.
16 16  {{/aufgabe}}
17 17  
18 -{{aufgabe id="lnFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels" zeit="7" cc="by-sa" niveau="e"}}
19 -Zeichne den Graphen der ln-Funktion {{formula}}f(x)=\ln{x}{{/formula}} im Intervall {{formula}}[0;5]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an den Stellen 1, 2, 3, 4. Für deine Beobachtung ist es hilfreich, wenn du die Tangentensteigungen an diesen Stellen exakt kennst. Sie sind:
20 -(%class="border slim"%)
21 -|=x|1|2|3|4
22 -|=f'{{{(x)}}}|1|{{formula}}\frac{1}{2}{{/formula}}|{{formula}}\frac{1}{3}{{/formula}}|{{formula}}\frac{1}{4}{{/formula}}
18 +{{aufgabe id="Differentialquotient berechnen" afb="II" kompetenzen="K5" quelle="Holger Engels" zeit="6" cc="by-sa" tags=""}}
19 +Gegeben ist die Funktion //f// mit {{formula}}f(x)=x^2{{/formula}}. Ihre Ableitungsfunktion soll mithilfe des Differentialquotienten hergeleitet werden. Berechne
20 +{{formula}}\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h}{{/formula}}
21 +{{/aufgabe}}
23 23  
24 -Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
23 +{{aufgabe id="Verschiebung durch Ableiten" afb="III" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}}
24 +Die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} hat die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} mit {{formula}}f^\prime\left(x\right)=2\cdot e^{2x}{{/formula}} und es gilt {{formula}}f\left(0\right)=1{{/formula}}.
25 +
26 +Leitet man die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} ab, so erhält man die zweite Ableitungsfunktion {{formula}}f^{\prime\prime}{{/formula}} von {{formula}}f{{/formula}}. Entsprechend entsteht die hundertste Ableitung {{formula}}f^{\left(100\right)}{{/formula}} von {{formula}}f{{/formula}}. Der Graph der hundersten Ableitungsfunktion {{formula}}f^{\left(100\right)}{{/formula}} lässt sich aus dem Graphen von {{formula}}f{{/formula}} durch eine Verschiebung in x-Richtung erzeugen.
27 +
28 +Ermittle, um wie viele Einheiten der Graph von {{formula}}f{{/formula}} dazu in x-Richtung zu verschieben ist.
25 25  {{/aufgabe}}
26 26  
27 27  {{aufgabe id="Ableitung berechnen und grafisch ermitteln" afb="II" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_2.pdf]]" niveau="g" tags="iqb" cc="by"}}