Zuletzt geändert von Holger Engels am 2025/12/07 21:47

Von Version 32.2
bearbeitet von Holger Engels
am 2025/12/07 21:47
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 33.1
bearbeitet von Holger Engels
am 2025/12/07 21:47
Änderungskommentar: Zurück zur Version 31.2

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,11 +3,11 @@
3 3  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben
4 4  
5 5  {{aufgabe id="eFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="7" cc="by-sa" tags=""}}
6 -Zeichne den Graphen der e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-2;2]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
6 +Zeichne den Graphen der e-Funktion {{formula}}f(x)=e^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
7 7  {{/aufgabe}}
8 8  
9 9  {{aufgabe id="expFunktion" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels" zeit="7" cc="by-sa" tags=""}}
10 -Zeichne den Graphen der e-Funktion {{formula}}f(x)=2^x{{/formula}} im Intervall {{formula}}[-2;2]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis.
10 +Zeichne den Graphen der e-Funktion {{formula}}f(x)=2^x{{/formula}} im Intervall {{formula}}[-1;3]{{/formula}}. Zeichne in einem Koordinatensystem genau darunter den Graphen der Ableitungsfunktion {{formula}}f'(x){{/formula}} durch Auftragen der Steigungen an mindestens 5 Stellen. Beschreibe dein Ergebnis.
11 11  {{/aufgabe}}
12 12  
13 13  {{aufgabe id="Trigonometrische Funktionen" afb="I" kompetenzen="K1,K4,K6" quelle="Holger Engels, Kim Fujan" zeit="8" cc="by-sa" tags=""}}
... ... @@ -24,6 +24,14 @@
24 24  Beschreibe dein Ergebnis und bestimme den Term der Ableitungsfunktion.
25 25  {{/aufgabe}}
26 26  
27 +{{aufgabe id="Verschiebung durch Ableiten" afb="III" kompetenzen="K1,K2,K4,K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_8.pdf ]]" niveau="e" tags="iqb" cc="by"}}
28 +Die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}f{{/formula}} hat die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} mit {{formula}}f^\prime\left(x\right)=2\cdot e^{2x}{{/formula}} und es gilt {{formula}}f\left(0\right)=1{{/formula}}.
29 +
30 +Leitet man die erste Ableitungsfunktion {{formula}}f^\prime{{/formula}} ab, so erhält man die zweite Ableitungsfunktion {{formula}}f^{\prime\prime}{{/formula}} von {{formula}}f{{/formula}}. Entsprechend entsteht die hundertste Ableitung {{formula}}f^{\left(100\right)}{{/formula}} von {{formula}}f{{/formula}}. Der Graph der hundersten Ableitungsfunktion {{formula}}f^{\left(100\right)}{{/formula}} lässt sich aus dem Graphen von {{formula}}f{{/formula}} durch eine Verschiebung in x-Richtung erzeugen.
31 +
32 +Ermittle, um wie viele Einheiten der Graph von {{formula}}f{{/formula}} dazu in x-Richtung zu verschieben ist.
33 +{{/aufgabe}}
34 +
27 27  {{aufgabe id="Ableitung berechnen und grafisch ermitteln" afb="II" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_2.pdf]]" niveau="g" tags="iqb" cc="by"}}
28 28  Gegeben sind die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}g{{/formula}} mit {{formula}}g\left(x\right)=2\cdot e^x-2{{/formula}} und {{formula}}h{{/formula}} mit {{formula}}h\left(x\right)=e^x+1{{/formula}}. Die Abbildung zeigt ihre Graphen.
29 29  [[image:Graphen2exp(x)-2.png||width="180" style="float: right"]]