K4 Ich kann ausgehend vom grafischen Differenzieren, Ableitungen für ausgewählte Funktionen bestimmen
K1 K6 Ich kann die Bedeutung der Eulerschen Zahl e als besondere Basis bei Exponentialfunktionen zur Berechnung ihrer Ableitung nennen
K1 K6 Ich kann die den Zusammenhang von trigonometrischen Funktionen mit ihren Ableitungsfunktionen beschreiben
Aufgabe 1 Verschiebung durch Ableiten (eAN) 𝕋 𝕃
Die in \(\mathbb{R}\) definierte Funktion \(f\) hat die erste Ableitungsfunktion \(f^\prime\) mit \(f^\prime\left(x\right)=2\cdot e^{2x}\) und es gilt \(f\left(0\right)=1\).
Leitet man die erste Ableitungsfunktion \(f^\prime\) ab, so erhält man die zweite Ableitungsfunktion \(f^{\prime\prime}\) von \(f\). Entsprechend entsteht die hundertste Ableitung \(f^{\left(100\right)}\) von \(f\). Der Graph der hundersten Ableitungsfunktion \(f^{\left(100\right)}\) lässt sich aus dem Graphen von \(f\) durch eine Verschiebung in x-Richtung erzeugen.
Ermittle, um wie viele Einheiten der Graph von \(f\) dazu in x-Richtung zu verschieben ist.
AFB k.A. | Kompetenzen K1 K2 K4 K5 | Bearbeitungszeit k.A. |
Quelle IQB e.V. | Lizenz CC B< |