Änderungen von Dokument BPE 12.3 Ableitungsregeln für Verknüpfungen und Verkettungen
Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47
Von Version 41.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:08
am 2025/01/05 00:08
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:13
am 2025/01/05 00:13
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,7 +1,7 @@ 1 1 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden 2 2 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren 3 3 4 -{{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="3 5"}}4 +{{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 5 5 Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}. 6 6 (% class="abc" %) 7 7 1. (((Ermittle rechnerisch (mittels Definition der Verknüpfung bzw. Verkettung) die Hauptform der folgenden zusammengesetzten Funktionen: ... ... @@ -24,16 +24,19 @@ 24 24 //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}} gilt. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche die Ableitungsregeln erfüllen. 25 25 {{/aufgabe}} 26 26 27 -{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} 27 +{{aufgabe id="Exponentialfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 28 28 Gegeben ist eine Exponentialfunktion {{formula}}f_q{{/formula}} mit {{formula}}f_q(x)=q^x{{/formula}} für //q>0//. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}f_q'{{/formula}} untersuchen und gehen dabei folgendermaßen vor. 29 29 (% class="abc" %) 30 30 1. Zeige, dass gilt: {{formula}}f_q'(x)=f_q(x)\cdot f_q'(0){{/formula}}. 31 -1. (((Untersuche die Abbildung {{formula}}q\mapsto f_q'(0){{/formula}} mit dem WTR. 32 -1. //Ansatz//. Wähle für //q// Potenzen von //e// und approximiere den Differenzialquotienten durch Differenzenquotienten mit kleinen Nennern. 33 -1. //Anmerkung//. Es gilt folgende Gleichung {{formula}}f_q'(0)=\ln(q){{/formula}}. Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion). 34 -1. //Anmerkung//. Es gilt die Äquivalenz folgender Gleichungen {{formula}}\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e{{/formula}}. Das zeichnet die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}. 35 -1. //Anmerkung//. Es gilt {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}}. 36 -))) 31 +1. Untersuche die Abbildung {{formula}}q\mapsto f_q'(0){{/formula}} mit dem WTR. 32 +//Ansatz//. Wähle für //q// Potenzen von //e// und approximiere den Differenzialquotienten durch Differenzenquotienten mit kleinen Nennern. 33 + 34 +//Anmerkung//. 35 +(% class="abc" %) 36 +1. Es gilt folgende Gleichung {{formula}}f_q'(0)=\ln(q){{/formula}}. Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion). 37 +1. Es gilt die Äquivalenz folgender Gleichungen {{formula}}\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e{{/formula}}. Das zeichnet die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}. 38 +1. Es gilt {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}}. 39 +1. Die Ableitungsregel für Exponenzialfunktionen auf S. 5 der Merkhilfe verwendet die Darstellung {{formula}}q^x=e^{bx}{{/formula}} für {{formula}}b=\ln(q){{/formula}}. 37 37 {{/aufgabe}} 38 38 39 39 {{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}} ... ... @@ -57,7 +57,7 @@ 57 57 //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel. 58 58 {{/aufgabe}} 59 59 60 -{{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="1 0"}}63 +{{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="15"}} 61 61 Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras). 62 62 (% class="abc" %) 63 63 1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}.