Zuletzt geändert von Martin Rathgeb am 2025/01/05 15:47

Von Version 50.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:21
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 43.1
bearbeitet von Martin Rathgeb
am 2025/01/05 00:13
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -28,17 +28,15 @@
28 28  Gegeben ist eine Exponentialfunktion {{formula}}f_q{{/formula}} mit {{formula}}f_q(x)=q^x{{/formula}} für //q>0//. Diese Funktion ist (just for info) differenzierbar. Wir wollen ihre erste Ableitung {{formula}}f_q'{{/formula}} untersuchen und gehen dabei folgendermaßen vor.
29 29  (% class="abc" %)
30 30  1. Zeige, dass gilt: {{formula}}f_q'(x)=f_q(x)\cdot f_q'(0){{/formula}}.
31 -1. Untersuche die Abbildung {{formula}}q\mapsto f_q'(0){{/formula}} mit dem WTR. Kennst du für den Funktionsterm eine passende Bezeichnung?
31 +1. Untersuche die Abbildung {{formula}}q\mapsto f_q'(0){{/formula}} mit dem WTR.
32 32  //Ansatz//. Wähle für //q// Potenzen von //e// und approximiere den Differenzialquotienten durch Differenzenquotienten mit kleinen Nennern.
33 -1. Zeige unter Verwendung der Kettenregel und folgender Anmerkung die Ableitungsregel für die Exponentialfunktionen auf S. 5 der Merkhilfe. Dort wird der Funktionsterm {{formula}}e^{bx}{{/formula}} betrachtet, das ist für {{formula}}b=\ln(q){{/formula}} der Funktionsterm von {{formula}}f_q{{/formula}}, nämlich {{formula}}e^{bx}=e^{\ln(q)x}=q^x=f_q(x){{/formula}}.
34 34  
35 -//Anmerkung//.(% class="abc" %)
36 -1. Es gilt folgende Gleichung:
37 - {{formula}}f_q'(0)=\ln(q)\:.{{/formula}}
38 -Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion).
39 -1. Es gilt die Äquivalenz folgender Gleichungen: {{formula}}\[\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e\:.\]{{/formula}}
40 -Das charakterisiert zunächst eine reelle Zahl, die wir durch "{{formula}}e{{/formula}}" bezeichnen" und das zeichnet weiter die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}.
41 -1. Es gilt allgemein für die Funktionswerte von {{formula}}f_q'{{/formula}}: {{formula}}\[f_q'(x)=\ln(q)\cdot f_q(x)\:.\]{{/formula}}
34 +//Anmerkung//.
35 +(% class="abc" %)
36 +1. Es gilt folgende Gleichung {{formula}}f_q'(0)=\ln(q){{/formula}}. Das liefert einen alternativen Zugang zur natürlichen Logarithmusfunktion (als Alternative zu ihrer Erscheinungsweise als Umkehrfunktion der natürlichen Exponentialfunktion).
37 +1. Es gilt die Äquivalenz folgender Gleichungen {{formula}}\lim_{h\to 0} \frac{q^h-1}{h}=1 \Leftrightarrow q=e{{/formula}}. Das zeichnet die natürliche Exponentialfunktion (zur Basis //e//) unter allen Exponentialfunktionen aus: {{formula}}f_e'(x)=f_e(x){{/formula}} bzw. kurz {{formula}}f_e'=f_e{{/formula}}.
38 +1. Es gilt {{formula}}f_q'(x)=\ln(q)\cdot f_q(x){{/formula}}.
39 +1. Die Ableitungsregel für Exponenzialfunktionen auf S. 5 der Merkhilfe verwendet die Darstellung {{formula}}q^x=e^{bx}{{/formula}} für {{formula}}b=\ln(q){{/formula}}.
42 42  {{/aufgabe}}
43 43  
44 44  {{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}