Version 38.1 von Martin Rathgeb am 2025/01/04 23:23

Verstecke letzte Bearbeiter
Martina Wagner 3.1 1 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
Martin Rathgeb 4.1 3
Martin Rathgeb 26.1 4 {{aufgabe id="Ableitungsregeln entdecken und begründen" afb="III" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="35"}}
Martin Rathgeb 14.1 5 Gegeben sind eine reelle Zahl //a// sowie zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
Martin Rathgeb 4.1 6 (% class="abc" %)
Martin Rathgeb 30.1 7 1. (((Ermittle rechnerisch (mittels Definition der Verknüpfung bzw. Verkettung) die Hauptform der folgenden zusammengesetzten Funktionen:
Martin Rathgeb 14.1 8 1. Summenfunktion {{formula}}f=f_1 + f_2{{/formula}}
9 1. Vielfachenfunktion {{formula}}f=a \cdot f_1{{/formula}}
10 1. Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}}.
11 1. Verkettung {{formula}}f=f_2\circ f_1{{/formula}}.
Martin Rathgeb 16.1 12
Martin Rathgeb 14.1 13 )))
Martin Rathgeb 30.1 14 1. Ermittle rechnerisch (mittels Definition des Differenzialquotienten) aus der Hauptform von //f// die Hauptform der ersten Ableitung //f'// von //f//.
Martin Rathgeb 14.1 15 1. (((Zeige, dass sich //f'// folgendermaßen schreiben lässt:
16 1. Summenfunktion {{formula}}f'=f_1' + f_2'{{/formula}}
17 1. Vielfachenfunktion {{formula}}f'=a \cdot f_1'{{/formula}}
18 1. Produktfunktion {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}}
Martin Rathgeb 25.1 19 1. Verkettung {{formula}}f'=(f_2'\circ f_1) \cdot f_1'{{/formula}}.
Martin Rathgeb 16.1 20
Martin Rathgeb 14.1 21 )))
22 1. Recherchiere die Ableitungsregeln (vgl. Merkhilfe, S. 5).
23 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a), (b) und (c) die Ableitungsregeln für differenzierbare Funktionen im Wesentlichen gezeigt sind.
Martin Rathgeb 29.1 24 //Anmerkung//. Verwende dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind (vgl. dazu BPE 12.5 und 12.1), d.h., in der Nähe von //u// die Näherung {{formula}}f(x)\approx f(u)+f'(u)\cdot (x-u){{/formula}} gilt. Mit anderen Worten: Jede differenzierbare Funktion verhält sich, lokal betrachtet, wie eine lineare Funktion, welche die Ableitungsregeln erfüllen.
Martin Rathgeb 4.1 25 {{/aufgabe}}
26
Martin Rathgeb 34.1 27 {{aufgabe id="Logarithmusfunktion ableiten" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="5"}}
Martin Rathgeb 30.1 28 Gegeben ist die natürliche Logarithmusfunktion {{formula}}\ln{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}_+^*{{/formula}} und zugehörigem Wertebereich {{formula}}\mathbb{R}{{/formula}}. Wir wollen ihre erste Ableitung {{formula}}\ln'{{/formula}} ermitteln und gehen dabei folgendermaßen vor.
29 //Implizites Differenzieren//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=e^{\ln(x)}=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=e^{\ln(x)}\cdot \ln'(x){{/formula}} nach {{formula}}\ln'{{/formula}} auf.
30 {{/aufgabe}}
31
Martin Rathgeb 34.1 32 {{aufgabe id="Potenzregel und Produktregel" afb="III" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
Martin Rathgeb 30.1 33 Gegeben ist eine Funktion //f// mit {{formula}}f(x)=x^k{{/formula}}.
34 (% class="abc" %)
35 1. Zeige die Instanz der Potenzregel für {{formula}}k=0,1,2{{/formula}} mittels Definition des Differenzialquotienten.
36 1. Zeige die Instanz der Potenzregel für {{formula}}k=3,4{{/formula}} mittels Produktregel.
37 //Ansatz//. {{formula}}f(x)=x^3=x^2\cdot x{{/formula}} bzw. {{formula}}f(x)=x^4=x^3\cdot x{{/formula}}.
38 1. Zeige die Instanz der Potenzregel für {{formula}}k=5{{/formula}} mittels Produktregel auf mindestens drei Weisen.
Martin Rathgeb 31.1 39 //Ansatz//. {{formula}}f(x)=x^5=x^4\cdot x=x^3\cdot x^2= x^{12}\cdot x^{-7}{{/formula}} oder ähnliches.
Martin Rathgeb 30.1 40 1. Zeige die Instanz der Potenzregel für {{formula}}k=1/2{{/formula}}.
Martin Rathgeb 31.1 41 //Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=f(x)\cdot f(x)=x{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}1=h'(x)=2 f(x) f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf.
Martin Rathgeb 30.1 42 1. Zeige die Instanz der Potenzregel für {{formula}}k=-n{{/formula}} mit {{formula}}n\in \mathbb{N}^*{{/formula}}.
Martin Rathgeb 32.1 43 //Ansatz (implizites Differenzieren)//. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=x^n\cdot f(x)=1{{/formula}}. Löse nun die Gleichung (zzgl. Termkette) {{formula}}0=h'(x)=(x^n)'\cdot f(x)+x^n\cdot f'(x){{/formula}} nach {{formula}}f'(x){{/formula}} auf.
Martin Rathgeb 38.1 44 1. Zeige die Ableitungsregel für Potenzfunktionen auf S. 5 der Merkhilfe, d.h., die Instanz der Potenzregel für {{formula}}k\in \mathbb{R}_+^*{{/formula}}.
Martin Rathgeb 33.1 45 //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}f(x)=x^k=e^{k\cdot \ln(x)}{{/formula}} von //f// und verwende die Ableitung der e-Funktion zzgl. Kettenregel.
Martin Rathgeb 30.1 46 {{/aufgabe}}
47
Martin Rathgeb 38.1 48 {{aufgabe id="Winkelfunktionen" afb="II" kompetenzen="K1,K5" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
Martin Rathgeb 36.1 49 Gegeben sind die Winkelfunktionen {{formula}}\sin, \cos{{/formula}} mit Definitionsbereich {{formula}}\mathbb{R}{{/formula}} und zugehörigem Wertebereich {{formula}}[-1;+1]{{/formula}}. Wir wollen ihre ersten Ableitungen {{formula}}\sin', \cos'{{/formula}} ermitteln und gehen dabei folgendermaßen vor. Betrachte die Hilfsfunktion //h// mit {{formula}}h(x)=(\sin(x))^2+(\cos(x))^2=1{{/formula}} (trigonometrischer Pythagoras).
50 (% class="abc" %)
51 1. //Implizites Differenzieren//. Zeige, dass gilt: {{formula}}\sin(x)\sin'(x)=-\cos(x)\cos'(x){{/formula}}.
Martin Rathgeb 37.1 52 1. Begründe bzw. plausibilisiere mittels Teilaufgabe (a) und der Graphen der Winkelfunktionen, dass {{formula}}\sin'=\cos{{/formula}} und {{formula}}\cos'=-\sin{{/formula}} gilt.
Martin Rathgeb 36.1 53 1. Zeige, dass aus {{formula}}\sin'=\cos{{/formula}} mittels Kettenregel {{formula}}\cos'=-\sin{{/formula}} folgt.
54 //Ansatz//. Betrachte folgende hilfreiche Darstellung der Funktionsgleichung {{formula}}\cos(x)=\sin(x-(-\pi/2)){{/formula}} von {{formula}}cos{{/formula}}.
55 //Anmerkung//. Teilaufgabe (c) plausibilisiert die Behauptung in Teilaufgabe (b).
Martin Rathgeb 38.1 56 1. Zeige die Ableitungsregeln für Winkelfunktionen auf S. 5 der Merkhilfe.
Martin Rathgeb 13.1 57 {{/aufgabe}}