Version 9.1 von Martin Rathgeb am 2025/01/03 22:43

Verstecke letzte Bearbeiter
Martina Wagner 3.1 1 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen anwenden
2 [[Kompetenzen.K5]] Ich kann die Ableitungsregeln für zusammengesetzte Funktionen kombinieren
Martin Rathgeb 4.1 3
Martin Rathgeb 8.1 4 {{aufgabe id="Produktregel entdecken und begründen" afb="II" kompetenzen="K1,K5,K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
Martin Rathgeb 6.1 5 Gegeben sind zwei lineare Funktionen {{formula}}f_i{{/formula}} mit {{formula}}f_i(x)=m_i x+b_i{{/formula}} für {{formula}}i=1,2{{/formula}}.
Martin Rathgeb 4.1 6 (% class="abc" %)
Martin Rathgeb 5.1 7 1. Ermittlere rechnerisch die Hauptform der Produktfunktion {{formula}}f=f_1\cdot f_2{{/formula}} und der ersten Ableitung //f'// von //f//.
Martin Rathgeb 7.1 8 1. Zeige, dass sich //f'// folgendermaßen schreiben lässt: {{formula}}f'=f_1'\cdot f_2+f_1\cdot f_2'{{/formula}}.
Martin Rathgeb 8.1 9 1. Recherchiere die Produktregel für Ableitungen; vgl. Merkhilfe Seite 5.
Martin Rathgeb 9.1 10 1. Begründe bzw. plausibilisiere, dass durch die Teilaufgaben (a) und (b) die Produktregel für differenzierbare Funktionen im Wesentlichen gezeigt ist.
11 //Anmerkung//. Verwenden dafür, dass differenzierbare Funktionen //lokal// "linear approximierbar" sind; vgl. dazu BPE 12.5 und 12.1.
Martin Rathgeb 4.1 12 {{/aufgabe}}
13