Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 17.1
bearbeitet von akukin
am 2024/03/21 19:20
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 16.2
bearbeitet von akukin
am 2024/03/07 17:59
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -63,38 +63,10 @@
63 63  1. Ermittle die Koordinaten derjenigen Punkte, die alle Graphen der Schar gemeinsam haben.
64 64  1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
65 65  //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
66 -1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
67 -[[image:Stau2.png||width="320" style="float: left"]]
68 -
69 -
70 -
71 -
72 -
73 -
74 -
75 -
66 +Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
67 +[[image:Stau2.png||width="220" style="float: left"]]
76 76  Für {{formula}}k\geq4{{/formula}} werden die Punkte {{formula}}P\left(4\middle| h_k\left(4\right)\right),Q\left(4\middle| h_k^\prime\left(4\right)\right),R\left(2\middle| h_k\left(2\right)\right){{/formula}} und {{formula}}S\left(2\middle| h_k^\prime\left(2\right)\right){{/formula}} betrachtet. Diese Punkte sind jeweils Eckpunkte eines Vierecks. Begründe, dass jedes dieser Vierecke ein Trapez ist, und zeige, dass die folgende Aussage richtig ist:
77 -//Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.//
69 +Für jeden geraden Wert von von {{formula}}k{{/formula}} mit {{formula}}k\geq4{{/formula}} stimmen der Flächeninhalt des Trapezes für {{formula}}k{{/formula}} und der Flächeninhalt des Trapezes für {{formula}}k+1{{/formula}} überein.
78 78  {{/aufgabe}}
79 79  
80 -{{aufgabe id="Schalldruck1" afb="I, II, III" kompetenzen="K1, K2, K4, K5, K6" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_B_7.pdf]]" niveau="e" tags="iqb"}}
81 -Gegeben ist die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_a:\ \ x\mapsto e^x\cdot\left(x-a\right)^2{{/formula}} mit {{formula}}a\in\mathbb{R}{{/formula}}. Der Graph von {{formula}}f_a{{/formula}} wird mit {{formula}}G_a{{/formula}} bezeichnet. Jeder Graph der Schar hat genau einen Hochpunkt und genau einen Tiefpunkt. Die Abbildung 1 zeigt {{formula}}G_\frac{3}{2}{{/formula}}.
82 -1. {{formula}}G_\frac{3}{2}{{/formula}} nimmt in einem seiner Wendepunkte seine kleinste Steigung an. Bestimme diese Steigung rechnerisch.
83 -1. {{formula}}G_a{{/formula}} hat mit jeder der beiden Koordinatenachsen genau einen gemeinsamen Punkt. Gib die Koordinaten dieser Punkte an und begründe, dass der gemeinsame Punkt mit der x-Achse der Tiefpunkt von {{formula}}G_a{{/formula}} ist.
84 -1. Es gibt einen positiven Wert von {{formula}}a{{/formula}}, für den {{formula}}G_a{{/formula}} und die Koordinatenachsen eine Fläche mit dem Inhalt 3 einschließen. Bestimme diesen Wert von {{formula}}a{{/formula}}.
85 -1. Für jeden Wert von {{formula}}a{{/formula}} mit {{formula}}a\neq0{{/formula}} schließt die Gerade durch die beiden Extrempunkte von {{formula}}G_a{{/formula}} mit den Koordinatenachsen ein Dreieck ein. Berechne denjenigen Wert von {{formula}}a{{/formula}}, für den dieses Dreieck gleichschenklig ist.
86 -
87 -Betrachtet werden die in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}f_{a,b}:\ \ x\mapsto e^x\cdot\left(\left(x-a+b\right)^2-b\right){{/formula}} mit {{formula}}a,b\in\mathbb{R}{{/formula}}. Es gilt {{formula}}f_{a,0}\left(x\right)=f_a\left(x\right){{/formula}}. Der Graph von {{formula}}f_{a,b}{{/formula}} wird mit {{formula}}G_{a,b}{{/formula}} bezeichnet.
88 -
89 -5. Für positive Werte von {{formula}}b{{/formula}} hat {{formula}}G_{a,b}{{/formula}} zwei Schnittpunkte mit der x-Achse. Für jeden Wert von {{formula}}a{{/formula}} wird der Abstand dieser beiden Schnittpunkte betrachtet. Zeige rechnerisch, dass dieser Abstand unabhängig von {{formula}}a{{/formula}} ist.
90 -
91 -Erhöht man im Term von {{formula}}f_{a,b}{{/formula}} den Wert von {{formula}}b{{/formula}} um 1, so erhält man einen Term der ersten Ableitungsfunktion von {{formula}}f_{a,b}{{/formula}}. Es gilt also {{formula}}f_{a,b}^\prime\left(x\right)=f_{a,b+1}\left(x\right){{/formula}}.
92 -
93 -6. Die Abbildung 2 zeigt für einen bestimmten Wert von {{formula}}a{{/formula}} die Graphen zweier Funktionen der Schar, bei denen sich die Werte von {{formula}}b{{/formula}} um 1 unterscheiden.
94 -Entscheide, welcher der beiden Graphen I und II zum größeren Wert von {{formula}}b{{/formula}} gehört, und begründe deine Entscheidung.
95 -
96 -7. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \ \land\ \ f_{a,1}\left(a\right)=0\ \ \land\ \ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an.
97 -
98 -{{/aufgabe}}
99 -
100 100  {{seitenreflexion/}}