Änderungen von Dokument BPE 13 Einheitsübergreifend

Zuletzt geändert von akukin am 2024/10/19 13:43

Von Version 37.1
bearbeitet von akukin
am 2024/03/26 23:25
Änderungskommentar: Neues Bild Stauabb3,4.png hochladen
Auf Version 47.2
bearbeitet von akukin
am 2024/10/03 16:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -54,7 +54,7 @@
54 54  1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge.
55 55  1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem
56 56   die Staulänge 0,5 km geringer ist als eine Stunde vorher.
57 -[[image:GraphStau.png||width="250" style="float: right"]]
57 +[[image:Graphstau.png||width="250" style="float: right"]]
58 58  1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
59 59  Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//.
60 60  
... ... @@ -67,11 +67,13 @@
67 67  1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
68 68  //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
69 69  1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
70 -[[image:Stau2.png||width="320" style="float: left"]]
70 +[[image:Stau2.PNG||width="320" style="float: left"]]
71 71  
72 72  
73 73  
74 74  
75 +
76 +
75 75  
76 76  
77 77  
... ... @@ -113,13 +113,14 @@
113 113  1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der //Abbildung 2// gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde.
114 114  Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 2//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 2//.
115 115  
116 -Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
118 +2. Betrachtet wird die Schar der in {{formula}}\mathbb{R}{{/formula}} definierten Funktionen {{formula}}h_k{{/formula}} mit {{formula}}h_k\left(x\right)=\left(x-3\right)^k+1{{/formula}} und {{formula}}k\in\mathbb{N}\setminus\left\{0\right\}{{/formula}}.
119 +(% style="list-style: lower-alpha" %)
117 117  1. Gib in Abhängigkeit von {{formula}}k{{/formula}} das Verhalten von {{formula}}h_k{{/formula}} für {{formula}}x\rightarrow-\infty{{/formula}} an und begründe deine Angabe.
118 118  1. Ermittle die Koordinaten der beiden Punkte, die alle Graphen der Schar gemeinsam haben.
119 119  1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage:
120 120  //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.//
121 -1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 2// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 3// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
122 -[[image:Stau2.png||width="320" style="float: left"]]
124 +1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der //Abbildung 3// für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der //Abbildung 4// für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}.
125 +[[image:Stauabb3,4.png||width="320" style="float: left"]]
123 123  
124 124  
125 125  
... ... @@ -160,6 +160,8 @@
160 160  
161 161  
162 162  
166 +
167 +
163 163  (% style="list-style:" start="7" %)
164 164  1. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an.
165 165  
... ... @@ -214,4 +214,13 @@
214 214  Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils.
215 215  {{/aufgabe}}
216 216  
222 +{{aufgabe id="Sinusgraph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb"}}
223 +Die Abbildung zeigt den Graphen {{formula}}G_f{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=2\cdot\sin{\left(\frac{1}{2}x\right)}{{/formula}}.
224 +[[image:2sin(0,5x).png||width="400" style="display:block;margin-left:auto;margin-right:auto"]]
225 +1. Beurteile mithilfe der Abbildung, ob der Wert des Integrals {{formula}}\int_{-2}^{8}{f\left(x\right)\mathrm{d} x}{{/formula}} negativ ist.
226 +1. Weise nach, dass folgende Aussage zutrifft:
227 +Die Tangente an {{formula}}G_f{{/formula}} im Koordinatenursprung ist die Gerade durch die Punkte {{formula}}\left(-1\middle|-1\right){{/formula}} und {{formula}}\left(1\middle|1\right){{/formula}}.
228 +
229 +{{/aufgabe}}
230 +
217 217  {{seitenreflexion/}}
GraphStau.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -20.3 KB
Inhalt
Stau2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.akukin
Größe
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Inhalt
2sin(0,5x).png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +28.8 KB
Inhalt
Graphstau.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Inhalt
Loseunggraphstau.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +107.5 KB
Inhalt
Stau2.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +88.7 KB
Inhalt