Änderungen von Dokument BPE 13 Einheitsübergreifend
Zuletzt geändert von akukin am 2024/10/19 13:43
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 4 hinzugefügt, 2 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -54,7 +54,7 @@ 54 54 1. Berechne die Zunahme der Staulänge von 06:30 Uhr bis 08:00 Uhr und bestimme für diesen Zeitraum die durchschnittliche Änderungsrate der Staulänge. 55 55 1. Bestimme denjenigen Zeitpunkt zwischen 06:00 Uhr und 10:00 Uhr, zu dem 56 56 die Staulänge 0,5 km geringer ist als eine Stunde vorher. 57 -[[image:Graph Stau.png||width="250" style="float: right"]]57 +[[image:Graphstau.png||width="250" style="float: right"]] 58 58 1. Für einen anderen Tag wird die momentane Änderungsrate der Staulänge für den Zeitraum von 06:00 Uhr bis 10:00 Uhr durch den in der Abbildung 1 gezeigten Graphen dargestellt. Dabei ist //x// die nach 06:00 Uhr vergangene Zeit in Stunden und //y// die momentane Änderungsrate der Staulänge in Kilometer pro Stunde. 59 59 Um 07:30 Uhr hat der Stau eine bestimmte Länge. Es gibt einen anderen Zeitpunkt, zu dem der Stau die gleiche Länge hat. Markiere diesen Zeitpunkt in der //Abbildung 1//, begründe deine Markierung und veranschauliche deine Begründung in der //Abbildung 1//. 60 60 ... ... @@ -67,11 +67,13 @@ 67 67 1. Die erste Ableitungsfunktion von {{formula}}h_k{{/formula}} wird mit {{formula}}h_k^\prime{{/formula}} bezeichnet. Beurteile die folgende Aussage: 68 68 //Es gibt genau einen Wert von {{formula}}k{{/formula}}, für den der Graph von {{formula}}h_k^\prime{{/formula}} Tangente an den Graphen von {{formula}}h_k{{/formula}} ist.// 69 69 1. Die Graphen von {{formula}}h_k{{/formula}} und {{formula}}h_k^\prime{{/formula}} werden in der Abbildung 2 für {{formula}}k=4{{/formula}} beispielhaft für gerade Werte von {{formula}}k{{/formula}} gezeigt, in der Abbildung 3 für {{formula}}k=5{{/formula}} beispielhaft für ungerade Werte von {{formula}}k{{/formula}}. 70 -[[image:Stau2. png||width="320" style="float: left"]]70 +[[image:Stau2.PNG||width="320" style="float: left"]] 71 71 72 72 73 73 74 74 75 + 76 + 75 75 76 76 77 77 ... ... @@ -104,7 +104,7 @@ 104 104 105 105 Im Sachzusammenhang ist neben der Funktion {{formula}}f{{/formula}} die in {{formula}}\mathbb{R}{{/formula}} definierte Funktion {{formula}}s{{/formula}} mit {{formula}}s\left(x\right)=\left(\frac{x}{4}\right)^2\cdot\left(4-x\right)^3=-\frac{1}{16}x^5+\frac{3}{4}x^4-3x^3+4x^2{{/formula}} von Bedeutung. 106 106 107 -(% style="list-style:" start="5" %) 109 +(% style="list-style:lower-alpha" start="5" %) 108 108 1. Begründe, dass die folgende Aussage richtig ist: 109 109 //Die Staulänge kann für jeden Zeitpunkt von 06:00 Uhr bis 10:00 Uhr durch die Funktion {{formula}}s{{/formula}} angegeben werden.// 110 110 Bestätige rechnerisch, dass sich der Stau um 10:00 Uhr vollständig aufgelöst hat. ... ... @@ -161,6 +161,8 @@ 161 161 162 162 163 163 166 + 167 + 164 164 (% style="list-style:" start="7" %) 165 165 1. Für jeden Wert von {{formula}}a{{/formula}} gilt {{formula}}f_{a,0}\left(a\right)=0\ \land\ f_{a,1}\left(a\right)=0\ \land\ f_{a,2}\left(a\right)\neq0{{/formula}}. Gib die Bedeutung dieser Tatsache für die Graphen der Funktion {{formula}}f_{a,-1}{{/formula}} an. 166 166 ... ... @@ -215,4 +215,13 @@ 215 215 Der Verlauf des Tragseils kann näherungsweise durch einen Kreisbogen beschrieben werden. Dazu dient der Kreis mit dem Mittelpunkt {{formula}}M\left(0|\frac{1699}{36}\right){{/formula}}, der durch die Punkte {{formula}}A\left(-20|5\right), B\left(20|5\right) \ \text{und} \ C\left(0|\frac{1}{2}\right){{/formula}} verläuft //(vgl. Abbildung 2)//. Berechne unter Verwendung des Kreisbogens die Länge des Tragseils. 216 216 {{/aufgabe}} 217 217 222 +{{aufgabe id="Sinusgraph" afb="" kompetenzen="K1, K2, K4, K5" quelle="[[IQB>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_3.pdf]]" niveau="e" tags="iqb"}} 223 +Die Abbildung zeigt den Graphen {{formula}}G_f{{/formula}} der in {{formula}}\mathbb{R}{{/formula}} definierten Funktion {{formula}}f{{/formula}} mit {{formula}}f\left(x\right)=2\cdot\sin{\left(\frac{1}{2}x\right)}{{/formula}}. 224 +[[image:2sin(0,5x).png||width="400" style="display:block;margin-left:auto;margin-right:auto"]] 225 +1. Beurteile mithilfe der Abbildung, ob der Wert des Integrals {{formula}}\int_{-2}^{8}{f\left(x\right)\mathrm{d} x}{{/formula}} negativ ist. 226 +1. Weise nach, dass folgende Aussage zutrifft: 227 +Die Tangente an {{formula}}G_f{{/formula}} im Koordinatenursprung ist die Gerade durch die Punkte {{formula}}\left(-1\middle|-1\right){{/formula}} und {{formula}}\left(1\middle|1\right){{/formula}}. 228 + 229 +{{/aufgabe}} 230 + 218 218 {{seitenreflexion/}}
- GraphStau.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -20.3 KB - Inhalt
- Stau2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Inhalt
- 2sin(0,5x).png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +28.8 KB - Inhalt
- Graphstau.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Inhalt
- Loseunggraphstau.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +107.5 KB - Inhalt
- Stau2.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +88.7 KB - Inhalt