Änderungen von Dokument Lösung Stau MMS
Zuletzt geändert von akukin am 2024/10/03 16:27
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 1 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -42,7 +42,7 @@ 42 42 1. Die Graphen von {{formula}}h_k{{/formula}} sind Parabeln //k//-ter Ordnung (im Falle von {{formula}}k=1{{/formula}} eine Gerade), die um 3 nach rechts und um 1 nach oben verschoben wurden. 43 43 Für gerade //k// gilt: {{formula}}x\rightarrow\pm\infty \ \Rightarrow \ h_k\left(x\right)\rightarrow+\infty{{/formula}} 44 44 Für ungerade //k// gilt: {{formula}}x\rightarrow\pm\infty\ \Rightarrow\ \ h_k\left(x\right)\rightarrow\pm\infty{{/formula}} 45 -1. Alle Graphen beinhalten den Punkt {{formula}}S\left(3\middle|1\right){{/formula}} (Tiefpunkt für gerades //k//, Wendepunkt für ungerades //k// (Begründung: siehe Teilaufgabe a.) und den Punkt {{formula}}P\left(4\middle|2\right){{/formula}}, da alle ungestreckten Parabeln sich vom Tief- bzw. Wendepunkt aus gesehen 1 weiter rechts und 1 weiter oben noch einmal schneiden.45 +1. Alle Graphen beinhalten den Punkt {{formula}}S\left(3\middle|1\right){{/formula}} (Tiefpunkt für gerades //k//, Wendepunkt für ungerades //k// (Begründung: siehe Teilaufgabe 1.) und den Punkt {{formula}}P\left(4\middle|2\right){{/formula}}, da alle ungestreckten Parabeln sich vom Tief- bzw. Wendepunkt aus gesehen 1 weiter rechts und 1 weiter oben noch einmal schneiden. 46 46 1. Da Tangenten durch lineare Funktionen beschrieben werden, kommt nur {{formula}}k=2{{/formula}} in Frage, denn nur dann ist {{formula}}h_k^\prime{{/formula}} eine Polynomfunktion 1. Grades. 47 47 Zu überprüfen ist noch, ob {{formula}}h_2^\prime{{/formula}} eine Tangente an {{formula}}h_2{{/formula}} beschreibt: 48 48 {{formula}}h_2\left(x\right)=\left(x-3\right)^2+1=x^2-6x+10\ \ \Rightarrow\ \ h_2^\prime\left(x\right)=2x-6{{/formula}}
- LösugGraphStau.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +7.7 KB - Inhalt