Zuletzt geändert von Dirk Tebbe am 2025/10/14 12:32

Von Version 28.1
bearbeitet von Dirk Tebbe
am 2025/10/14 12:02
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 26.1
bearbeitet von Martin Stern
am 2025/10/14 11:41
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.dirktebbe
1 +XWiki.martinstern
Inhalt
... ... @@ -11,14 +11,6 @@
11 11  
12 12  == Elementargeometrie ==
13 13  
14 -
15 -{{aufgabe id="Abstand zweier Kurvenpunkte berechnen" afb="I" kompetenzen="K4,K5" quelle="Martin" cc="BY-SA" zeit="15"}}
16 -
17 -Gegeben sind zwei Funktionen {{formula}}f{{/formula}} und {{formula}}g{{/formula}} durch {{formula}}f(x)=-e^{-0,25x}-0,5x+2{{/formula}} und {{formula}}g(x)=-0,5x+1{{/formula}}. Ihre Graphen sind {{formula}}K_f{{/formula}} und {{formula}}K_g{{/formula}}.
18 -Eine Gerade mit der Gleichung {{formula}}x=u{{/formula}} und {{formula}}-6\leq u \leq 3{{/formula}} schneidet {{formula}}K_f{{/formula}} im Punkt {{formula}}P{{/formula}} und {{formula}}K_g{{/formula}} im Punkt {{formula}}Q{{/formula}}. Berechnen Sie den maximalen Abstand der Punkte {{formula}}P{{/formula}} und {{formula}}Q{{/formula}}.
19 -
20 -{{/aufgabe}}
21 -
22 22  {{aufgabe id="Zelt" afb="III" kompetenzen="K2,K5" quelle="KMap" cc="BY-SA" zeit="15" links="[[Interaktives Erkunden>>https://kmap.eu/app/browser/Mathematik/Differentialrechnung/Optimieren#erkunden]]"}}
23 23  
24 24  Für ein Zelt ist vorgegeben, dass es die Form einer senkrechten Pyramide mit quadratischer Grundfläche haben soll. Für diese Form soll nun bei einer gegebenen Zeltstangenlänge von 2,5 m das Volumen V maximiert werden, indem die Kantenlänge a der Grundfläche variiert wird. Folgende Formel gilt für das Volumen einer Pyramide:
... ... @@ -58,3 +58,4 @@
58 58  {{/aufgabe}}
59 59  
60 60  {{seitenreflexion/}}
53 +