Wiki-Quellcode von BPE 17.5 Zufallsgröße, Erwartungswert und Standardabweichung
Zuletzt geändert von akukin am 2024/10/21 15:57
Zeige letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
1 | {{aufgabe id="Kugeln mit negativen Zahlen" afb="" kompetenzen="K1, K2, K3, K4, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2023/abitur/pools2023/mathematik/erhoeht/2023_M_erhoeht_A_13.pdf]]" niveau="e" tags="iqb" cc="by"}} | ||
2 | In einem Behälter befinden sich fünf Kugeln, auf denen jeweils eine Zahl steht. Auf drei der Kugeln steht die Zahl 2, auf zwei der Kugeln die negative Zahl {{formula}}a{{/formula}}. Zweimal nacheinander wird eine Kugel zufällig entnommen und wieder zurückgelegt. | ||
3 | 1. Gib im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term {{formula}}2\cdot\frac{3}{5}\cdot\frac{2}{5}{{/formula}} berechnet werden kann. | ||
4 | 1. Die Zufallsgröße {{formula}}X{{/formula}} gibt das Produkt der Zahlen an, die auf den beiden entnommenen Kugeln stehen. Der Erwartungswert von {{formula}}X{{/formula}} ist 4. Bestimme den Wert von {{formula}}a{{/formula}}. | ||
5 | {{/aufgabe}} | ||
6 | |||
7 | {{aufgabe id="Zufallsgröße Tetraeder" afb="" kompetenzen="K1, K2, K3, K4, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_20.pdf]]" niveau="e" tags="iqb" cc="by"}} | ||
8 | Betrachtet wird ein Tetraeder, bei dem die Seiten mit den Zahlen 1 bis 4 durchnummeriert sind. Beim Werfen des Tetraeders werden alle Zahlen mit gleicher Wahrscheinlichkeit erzielt. Das Tetraeder wird viermal geworfen. Die Zufallsgröße {{formula}}X{{/formula}} beschreibt die Anzahl der Würfe, bei denen die Zahl 1 erzielt wird. Die Wahrscheinlichkeitsverteilung von {{formula}}X{{/formula}} ist in der Abbildung 1 dargestellt. | ||
9 | |||
10 | [[image:TetraederZufallsgroesse.PNG||width="700" style="display:block;margin-left:auto;margin-right:auto"]] | ||
11 | |||
12 | 1. Die Zufallsgröße {{formula}}Y{{/formula}} gibt die Anzahl der Würfe an, bei denen die Zahl 1 nicht erzielt wird. Stelle die Wahrscheinlichkeitsverteilung von {{formula}}Y{{/formula}} in Abbildung 2 dar. | ||
13 | 1. Bei einem anderen Zufallsexperiment werden ein roter und ein grüner Würfel, bei denen die Seiten jeweils mit den Zahlen 1 bis 6 durchnummeriert sind, viermal gleichzeitig geworfen. Gib zu diesem Zufallsexperiment eine Zufallsgröße {{formula}}Z{{/formula}} an, die die gleiche Wahrscheinlichkeitsverteilung hat wie {{formula}}X{{/formula}} und begründe deine Angabe. | ||
14 | {{/aufgabe}} | ||
15 | |||
16 | {{aufgabe id="Glücksrad Zufallsgröße" afb="" kompetenzen="K1, K2, K3, K4, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_16.pdf]]" niveau="e" tags="iqb" cc="by"}} | ||
17 | Ein Glücksrad ist in 20 gleich große Sektoren unterteilt, die entweder blau oder gelb eingefärbt sind. Das Glücksrad wird 100-mal gedreht. Die binomialverteilte Zufallsgröße {{formula}}X{{/formula}} beschreibt, wie oft dabei die Farbe „Blau“, die binomialverteilte Zufallsgröße {{formula}}Y{{/formula}}, wie oft dabei die Farbe „Gelb“ erzielt wird. | ||
18 | |||
19 | 1. Begründe, dass {{formula}}X{{/formula}} und {{formula}}Y{{/formula}} die gleiche Standardabweichung haben. | ||
20 | Teilaufgabe | ||
21 | 1. ((( Der Erwartungswert von {{formula}}X{{/formula}} ist ganzzahlig. Die Abbildung zeigt Werte der Wahrscheinlichkeitsverteilung von {{formula}}X{{/formula}}. | ||
22 | [[image:GluecksradZufallsgroesse.PNG||width="450" style="display:block;margin-left:auto;margin-right:auto"]] | ||
23 | Bestimme die Anzahl der blauen Sektoren des Glücksrads. | ||
24 | ))) | ||
25 | |||
26 | {{/aufgabe}} | ||
27 | |||
28 | {{aufgabe id="Würfel beschriften" afb="" kompetenzen="K1, K2, K3, K5, K6" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20erhoeht/2024_M_erhoeht_A_19.pdf]]" niveau="e" tags="iqb" cc="by"}} | ||
29 | Die drei nicht sichtbaren Seiten des abgebildeten Würfels sollen jeweils mit einer der Zahlen 3, 4, 5 oder 6 beschriftet werden. Dabei können Zahlen auch mehrfach verwendet werden. | ||
30 | [[image:Würfelbeschriften.PNG||width="150" style="float: right"]] | ||
31 | Nach der Beschriftung soll der Würfel folgende Eigenschaften haben: | ||
32 | * Beim einmaligen Werfen ist der Erwartungswert für die erzielte Zahl gleich 4. | ||
33 | * Auf den sechs Seiten des Würfels kommen genau drei verschiedene Zahlen vor. | ||
34 | * Die Wahrscheinlichkeit dafür, dass beim zweimaligen Werfen des Würfels zweimal die gleiche Zahl erzielt wird, beträgt {{formula}}\frac{1}{2}{{/formula}}. | ||
35 | |||
36 | Untersuche, ob es möglich ist, die nicht sichtbaren Seiten des Würfels so zu beschriften, dass er alle drei Eigenschaften besitzt. | ||
37 | |||
38 | {{/aufgabe}} | ||
39 | |||
40 | {{aufgabe id="Glücksrad Spendengala" afb="" kompetenzen="K1, K2, K3, K5" quelle="[[IQB e.V.>>https://www.iqb.hu-berlin.de/abitur/pools2024/abitur/pools2024/mathematik/mathematik%20grundlegend/2024_M_grundlege_13.pdf]]" niveau="g" tags="iqb" cc="by"}} | ||
41 | Auf einer Spendengala wird das folgende Spiel angeboten: Für einen Einsatz von 3€ dreht der Spieler zweimal ein Glücksrad. Dieses besteht aus mehreren gleich großen Sektoren. 10% der Sektoren sind grün eingefärbt. Für jedes Erzielen eines grünen Sektors werden dem Spieler 10€ ausgezahlt. | ||
42 | |||
43 | 1. Zeige, dass die Wahrscheinlichkeit dafür, bei einem Spiel genau einmal einen grünen Sektor zu erzielen, 18% beträgt. | ||
44 | 1. Begründe, dass der Veranstalter der Spendengala erwarten kann, mit diesem Spiel auf lange Sicht mehr Geld einzunehmen als auszuzahlen. | ||
45 | |||
46 | {{/aufgabe}} | ||
47 | |||
48 | {{seitenreflexion}} |