Zuletzt geändert von Martina Wagner am 2025/10/20 13:30

Von Version 35.1
bearbeitet von karlc
am 2025/10/01 10:25
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 29.2
bearbeitet von karlc
am 2025/10/01 09:15
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -83,68 +83,80 @@
83 83  11. {{formula}} P(E) = \frac{1}{2} {{/formula}}
84 84  {{/aufgabe}}
85 85  
86 -== Mehrstufige Zufallsexperimente ==
87 -
88 88  {{aufgabe id="Kugelziehung" afb="I" kompetenzen="K2, K5" quelle="C.Karl und A.Frohberger" cc="BY-SA" zeit="10"}}
89 89  In einer Urne befinden sich zwei rote und drei blaue Kugeln. Ziehe zwei Kugeln nacheinander ohne Zurücklegen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
90 -(%class=abc%)
91 -1. Beide Kugeln sind rot.
92 -1. Eine Kugel ist rot und eine ist blau.
93 -1. Beide Kugeln sind blau.
88 +
89 +a) Beide Kugeln sind rot.
90 +
91 +b) Eine Kugel ist rot und eine ist blau.
92 +
93 +c) Beide Kugeln sind blau.
94 +
94 94  *Hinweis: Zeichne ein Baumdiagramm zur Veranschaulichung.*
95 95  {{/aufgabe}}
96 96  
97 -{{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
98 +{{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="8"}}
98 98  Ein Glücksrad hat die Farben Rot, Blau und Gelb. Die Wahrscheinlichkeiten sind wie folgt:
99 -Rot: 50%
100 -Blau: 30%
101 -Gelb: 20%
102 -(%class=abc%)
103 -1. Zeichne ein Baumdiagramm für zwei Umdrehungen des Glücksrads.
104 -1. Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
105 -1. Berechne die Wahrscheinlichkeit, dass es zweimal Gelb zeigt.
100 +
101 +- Rot: 50%
102 +- Blau: 30%
103 +- Gelb: 20%
104 +
105 +a) Zeichne ein Baumdiagramm für zwei Umdrehungen des Glücksrads.
106 +
107 +b) Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
108 +
109 +c) Berechne die Wahrscheinlichkeit, dass es zweimal Gelb zeigt.
106 106  {{/aufgabe}}
107 107  
108 -{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
112 +{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="10"}}
109 109  Marie und Sophia ziehen nacheinander Bonbons aus einer Tüte. In der Tüte sind 4 Himbeer- und 6 Zitronenbonbons.
110 -(%class=abc%)
111 -1. Bestimme die Wahrscheinlichkeit, dass Marie ein Himbeerbonbon zieht und Sophia danach ein Zitronenbonbon.
112 -1. Berechne die Wahrscheinlichkeit, dass beide ein Himbeerbonbon ziehen.
113 -1. Erstelle eine kurze Geschichte, in der diese Wahrscheinlichkeiten vorkommen.
114 +
115 +a) Bestimme die Wahrscheinlichkeit, dass Marie ein Himbeerbonbon zieht und Sophia danach ein Zitronenbonbon.
116 +
117 +b) Berechne die Wahrscheinlichkeit, dass beide ein Himbeerbonbon ziehen.
118 +
119 +c) Erstelle eine kurze Geschichte, in der diese Wahrscheinlichkeiten vorkommen.
114 114  {{/aufgabe}}
115 115  
116 -{{aufgabe id="Wahrscheinlichkeitskarten" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
117 -Denke dir ein Zufallsexperiment aus, bei dem drei verschiedene Ergebnisse a,b,c auftreten können und die folgende Wahrscheinlichkeiten haben:
118 -- Ergebnis a: 0,2
119 -- Ergebnis b: 0,5
120 -- Ergebnis c: 0,3
121 -(%class=abc%)
122 -1. Beschreibe dein ausgedachtes Experimetn und berechne die Gesamtwahrscheinlichkeit, dass mindestens ein Ergebnis eintritt.
123 -1. Berechne die Gesamtwahrscheinlichkeit dafür, dass ein Ergebnis zweimal in Folge auftritt.
122 +{{aufgabe id="Wahrscheinlichkeitskarten" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="8"}}
123 +Erstelle ein Kartenspiel mit den folgenden Wahrscheinlichkeiten:
124 +
125 +- Karte A: 0,2 (Ereignis tritt ein)
126 +- Karte B: 0,5 (Ereignis tritt ein)
127 +- Karte C: 0,3 (Ereignis tritt ein)
128 +
129 +a) Berechne die Gesamtwahrscheinlichkeit, dass mindestens eine Karte ein Ereignis zeigt.
130 +
131 +b) Ziehe zwei Karten nacheinander ohne Zurücklegen. Bestimme die Wahrscheinlichkeit, dass beide Karten ein Ereignis zeigen.
124 124  {{/aufgabe}}
125 125  
126 -{{aufgabe id="Alltagsbeispiele" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
134 +{{aufgabe id="Alltagsbeispiele" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="10"}}
127 127  Denke an eine alltägliche Situation, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
128 -(%class=abc%)
129 -1. Beschreibe die Situation und die möglichen Ergebnisse.
130 -1. Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
131 -1. Erstelle ein Baumdiagramm zur Veranschaulichung.
136 +
137 +a) Beschreibe die Situation und die möglichen Ergebnisse.
138 +
139 +b) Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
140 +
141 +c) Erstelle ein Baumdiagramm zur Veranschaulichung.
132 132  {{/aufgabe}}
133 133  
134 -{{aufgabe id="Digitale Simulationen" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
144 +{{aufgabe id="Digitale Simulationen" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="8"}}
135 135  Nutze eine Online-Plattform oder App, um Wahrscheinlichkeiten zu simulieren.
136 -(%class=abc%)
137 -1. Führe eine Simulation durch, bei der du die Wahrscheinlichkeit für das Ziehen einer bestimmten Kugelfarbe berechnest.
138 -1. Dokumentiere die Ergebnisse und vergleiche sie mit den theoretischen Wahrscheinlichkeiten.
146 +
147 +a) Führe eine Simulation durch, bei der du die Wahrscheinlichkeit für das Ziehen einer bestimmten Kugelfarbe berechnest.
148 +
149 +b) Dokumentiere die Ergebnisse und vergleiche sie mit den theoretischen Wahrscheinlichkeiten.
139 139  {{/aufgabe}}
140 140  
141 -{{aufgabe id="Mathematische Rätsel" afb="II" kompetenzen="K2, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
152 +{{aufgabe id="Mathematische Rätsel" afb="II" kompetenzen="K2, K5" quelle="Bastian Knöpfle, Niels Barth" cc="BY-SA" zeit="10"}}
142 142  Löse das folgende Rätsel:
143 143  
144 144  Ein Würfel wird dreimal geworfen. Berechne die Wahrscheinlichkeit, dass mindestens einmal eine Sechs geworfen wird.
145 -(%class=abc%)
146 -1. Erstelle eine Tabelle, um die möglichen Ergebnisse aufzulisten.
147 -1. Berechne die Wahrscheinlichkeit, dass keine Sechs geworfen wird, und ziehe die Schlussfolgerung.
156 +
157 +a) Erstelle eine Tabelle, um die möglichen Ergebnisse aufzulisten.
158 +
159 +b) Berechne die Wahrscheinlichkeit, dass keine Sechs geworfen wird, und ziehe die Schlussfolgerung.
148 148  {{/aufgabe}}
149 149  
150 150