Zuletzt geändert von Martina Wagner am 2025/10/20 13:30

Von Version 40.1
bearbeitet von Martina Wagner
am 2025/10/06 10:01
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 49.1
bearbeitet von Martina Wagner
am 2025/10/20 13:30
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -3,11 +3,9 @@
3 3  [[Kompetenzen.K6]] [[Kompetenzen.K5]] Ich kann die Zufallsexperimente deuten.
4 4  [[Kompetenzen.K5]] Ich kann die Wahrscheinlichkeiten, insbesondere bei Laplace-Experimenten berechnen
5 5  
6 -== Aufgaben zu Laplace-Experimenten ==
7 -
8 8  {{aufgabe id="Laplace-Experimente" afb="I" kompetenzen="K1, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="5"}}
9 9  
10 -Beurteile, ob es sich bei folgenden Beispielen um Laplace-Experimente handelt:
8 +Beurteile, ob es sich bei folgenden Beispielen um Laplace-Experimente handelt. Begründe deine Antwort jeweils.
11 11  (%class=abc%)
12 12  1. Wurf eines Flaschendeckels
13 13  1. In einer undurchsichtigen Schale befinden sich je 10 Bonbons in 5 verschiedenen Geschmacksrichtungen (z.B. Erdbeere, Zitrone, Apfel, Cola, Himbeere). Hanna zieht ein Bonbon.
... ... @@ -17,9 +17,8 @@
17 17  1. Fußballspiel zwischen FC Bayern München und SV Waldhof Mannheim
18 18  {{/aufgabe}}
19 19  
20 -== Quiz über Laplace-Experimente ==
21 21  
22 -{{aufgabe id="Quiz" afb="I" kompetenzen="K1, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
19 +{{aufgabe id="Quiz" afb="I" kompetenzen="K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
23 23  
24 24  Gib jeweils die richtige Antwort an.
25 25  
... ... @@ -79,15 +79,13 @@
79 79  11. {{formula}} \frac{1}{2} {{/formula}}
80 80  {{/aufgabe}}
81 81  
82 -== Mehrstufige Zufallsexperimente ==
83 83  
84 84  {{aufgabe id="Kugelziehung" afb="II" kompetenzen="K5, K6" quelle="C.Karl und A.Frohberger" cc="BY-SA" zeit="10"}}
85 -In einer Urne befinden sich zwei rote und drei blaue Kugeln. Ziehe zwei Kugeln nacheinander ohne Zurücklegen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
81 +In einer Urne befinden sich zwei rote und drei blaue Kugeln. Es werden zwei Kugeln nacheinander ohne Zurücklegen gezogen. Berechne die Wahrscheinlichkeiten für die folgenden Ereignisse:
86 86  (%class=abc%)
87 87  1. Beide Kugeln sind rot.
88 88  1. Eine Kugel ist rot und eine ist blau.
89 89  1. Beide Kugeln sind blau.
90 -*Hinweis: Zeichne ein Baumdiagramm zur Veranschaulichung.*
91 91  {{/aufgabe}}
92 92  
93 93  {{aufgabe id="Baumdiagramm" afb="II" kompetenzen="K4, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
... ... @@ -96,45 +96,46 @@
96 96  Blau: 30%
97 97  Gelb: 20%
98 98  (%class=abc%)
99 -1. Zeichne ein Baumdiagramm für zwei Umdrehungen des Glücksrads.
100 -1. Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
94 +1. Zeichne das Glücksrad.
95 +1. Berechne die Wahrscheinlichkeit, dass es zuerst Rot und dann Blau zeigt.
101 101  1. Berechne die Wahrscheinlichkeit, dass es zweimal Gelb zeigt.
102 102  {{/aufgabe}}
103 103  
104 -{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="II" kompetenzen="K1, K3, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
99 +{{aufgabe id="Wahrscheinlichkeitsgeschichten" afb="I" kompetenzen="K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
105 105  Marie und Sophia ziehen nacheinander Bonbons aus einer Tüte. In der Tüte sind 4 Himbeer- und 6 Zitronenbonbons.
106 106  (%class=abc%)
107 107  1. Bestimme die Wahrscheinlichkeit, dass Marie ein Himbeerbonbon zieht und Sophia danach ein Zitronenbonbon.
108 108  1. Berechne die Wahrscheinlichkeit, dass beide ein Himbeerbonbon ziehen.
109 -1. Erstelle eine kurze Geschichte, in der diese Wahrscheinlichkeiten vorkommen.
110 110  {{/aufgabe}}
111 111  
112 -{{aufgabe id="Wahrscheinlichkeitskarten" afb="III" kompetenzen="K2, K3, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
113 -Denke dir ein Zufallsexperiment aus, bei dem drei verschiedene Ergebnisse a,b,c auftreten können und die folgende Wahrscheinlichkeiten haben:
114 -- Ergebnis a: 0,2
115 -- Ergebnis b: 0,5
116 -- Ergebnis c: 0,3
106 +{{aufgabe id="Wahrscheinlichkeitskarten" afb="II" kompetenzen="K2,K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="8"}}
107 +Bei einem Spiel gibt es eine Urne, die 8 rote und 2 blaue Kugeln enthält.
108 +Für eine Spielrunde wird aus dieser Urne dreimal mit Zurücklegen gezogen.
109 +Ein Spieler gewinnt pro gezogene blaue Kugel einen Euro. Der Einsatz pro Spiel beträgt 10 Cent.
110 +Fritz spielt zwei Spielrunden und berechnet jeweils die Wahrscheinlichkeit für diese Runde.
111 +
112 +-Wahrscheinlichkeit Spielrunde 1: 0,128
113 +-Wahrscheinlichkeit Spielrunde 2: 0,008
114 +
117 117  (%class=abc%)
118 -1. Beschreibe dein ausgedachtes Experiment und berechne die Gesamtwahrscheinlichkeit, dass mindestens ein Ergebnis eintritt.
119 -1. Berechne die Gesamtwahrscheinlichkeit dafür, dass ein Ergebnis zweimal in Folge auftritt.
116 +Gib an, welchen Gewinn Fritz in Spielrunde 1 und 2 macht.
117 +
120 120  {{/aufgabe}}
121 121  
122 122  {{aufgabe id="Alltagsbeispiele" afb="III" kompetenzen="K3, K5, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
123 -Denke an eine alltägliche Situation, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
121 +Es gibt alltägliche Situationen, in der Wahrscheinlichkeiten eine Rolle spielen, z.B. Wettervorhersage oder Sportergebnisse.
124 124  (%class=abc%)
125 -1. Beschreibe die Situation und die möglichen Ergebnisse.
126 -1. Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
123 +1. Nenne eine solche Situation und die möglichen Ergebnisse.
127 127  1. Erstelle ein Baumdiagramm zur Veranschaulichung.
125 +1. Berechne die Wahrscheinlichkeiten für die verschiedenen Ergebnisse.
128 128  {{/aufgabe}}
129 129  
130 130  
131 -{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K4, K6" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
132 -Löse das folgende Rätsel:
129 +{{aufgabe id="Summen- und Produktregel anwenden" afb="II" kompetenzen="K4, K5" quelle="C. Karl, A. Frohberger" cc="BY-SA" zeit="10"}}
133 133  
134 134  Ein Würfel wird dreimal geworfen. Berechne die Wahrscheinlichkeit, dass mindestens einmal eine Sechs geworfen wird.
135 135  (%class=abc%)
136 -1. Erstelle eine Tabelle, um die möglichen Ergebnisse aufzulisten.
137 -1. Berechne die Wahrscheinlichkeit, dass keine Sechs geworfen wird, und ziehe die Schlussfolgerung.
133 +
138 138  {{/aufgabe}}
139 139  
140 140