Wiki-Quellcode von Lösung Fruchgummis

Version 14.1 von Stefan Martin am 2025/12/17 13:33

Zeige letzte Bearbeiter
1 Die Wahrscheinlichkeit für das Ereignis E = "kein gelbes Fruchtgummi" lässt sich z. B. berechnen, in dem die Wahrscheinlichkeit des sog. Gegenereignisses ermittelt und diese schlussendlich von 1 subtrahiert wird:
2
3 {{formula}}
4 \begin{aligned}
5 P(E) & = 1-(P(\text{"gelb, gelb"}) + P(\text{"gelb, rot"}) + P(\text{"gelb, weiß"}) + P(\text{"gelb, grün"}) ) \\
6 & = 1- (313⋅212+2⋅313⋅712+2⋅313⋅212+2⋅313⋅112) \\
7 & = 1526 \\
8 \end{aligned}
9 {{/formula}}
10
11 Die Aussage ist also richtig.
12
13 \begin{tikzpicture}[
14 level distance=3.5cm,
15 level 1/.style={sibling distance=5cm},
16 level 2/.style={sibling distance=1.6cm},
17 edge from parent/.style={draw, -latex},
18 every node/.style={font=\small}
19 ]
20
21 \node {}
22 child { node {Rot}
23 edge from parent node[left] {$\frac{7}{17}$}
24 child { node {Rot} edge from parent node[left] {$\frac{6}{16}$} }
25 child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
26 child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
27 child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
28 }
29 child { node {Grün}
30 edge from parent node[left] {$\frac{1}{17}$}
31 child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
32 child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
33 child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
34 }
35 child { node {Gelb}
36 edge from parent node[right] {$\frac{3}{17}$}
37 child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
38 child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
39 child { node {Weiß} edge from parent node[right] {$\frac{2}{16}$} }
40 }
41 child { node {Weiß}
42 edge from parent node[right] {$\frac{2}{17}$}
43 child { node {Rot} edge from parent node[left] {$\frac{7}{16}$} }
44 child { node {Grün} edge from parent node[right] {$\frac{1}{16}$} }
45 child { node {Gelb} edge from parent node[right] {$\frac{3}{16}$} }
46 };
47
48 \end{tikzpicture}