BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung
Zuletzt geändert von Thomas Weber am 2025/10/01 11:50
K4 K5 Ich kann Potenzen mit rationalen Exponenten in Wurzelausdrücke umwandeln und umgekehrt.
K4 K5 Ich kann Potenzen mit negativen Exponenten in Bruchausdrücke umwandeln und umgekehrt.
K4 K5 Ich kann Zahlen in Normdarstellung angeben.
K4 K5 Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen.
1 Von der Potenz- zur Wurzelschreibweise (2 min) 𝕃
Gib in Wurzelschreibweise an und berechne, wenn möglich.
- \(81^{\frac{1}{2}}\)
- \(8^{\frac{1}{3}}\)
- \(0,0016^{\frac{1}{4}}\)
- \(a^{\frac{8}{3}}\)
| AFB II - K5 K6 | Quelle Böhringer, Hauptmann,Könings |
2 Von der Wurzel- zur Potenzschreibweise (2 min) 𝕃
Gib in Potenzschreibweise an und berechne, wenn möglich.
- \(\sqrt{3^5}\)
- \(\sqrt[4]{9^2}\)
- \(\sqrt[a]{b^c}\)
| AFB I - K5 K6 | Quelle Böhringer, Hauptmann, Könings |
3 Lücken (3 min) 𝕃
Ermittle die fehlenden Zahlen in den Lücken:
- \(a^{\frac{\square}{4}}=\sqrt[\square]{a^5}\)
- \(\sqrt[5]{b^{\frac{\square}{2}}}= b^{\frac{3}{10}}\)
- \(\sqrt[\square]{c^{\frac{4}{5}}}= c^{\frac{4}{15}}\)
- \(\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}\)
| AFB II - K5 | Quelle Böhringer, Hauptmann,Könings |
4 Negative Exponenten (2 min) 𝕃
Bestimme die fehlenden Zahlen in den Lücken und führe fort:
| \(\square\) | \(3^2\) | \(3^1\) | \(3^0\) | \(3^{-1}\) | \(3^{-2}\) | \(\square\) |
| 27 | 9 | 3 | \(\square\) | \(\square\) | \(\square\) | \(\square\) |
| AFB I - K5 | Quelle Böhringer, Hauptmann, Könings |
5 Von der Potenz zum Bruch (2 min) 𝕃
Gib als Bruch an und berechne, wenn möglich.
- \(3^{-5}\)
- \( a^{-b}\)
- \(8 \cdot b^{-2}\)
- \(27^{-\frac{1}{3}} \)
| AFB I - K5 K6 | Quelle Böhringer, Hauptmann, Könings |
6 Symbole ergänzen (4 min) 𝕃
- Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an.

- Ermittle die Ausgabe des Taschenrechners in wissenschaftlicher Schreibweise.


| AFB II - K4 K5 | Quelle Böhringer, Hauptmann, Könings |