Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43

Von Version 179.1
bearbeitet von Simone Schuetze
am 2025/12/17 14:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 194.1
bearbeitet von Sandra Vogt
am 2025/12/17 15:25
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.simoneschuetze
1 +XWiki.sandravogt
Inhalt
... ... @@ -11,7 +11,7 @@
11 11  | 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}}
12 12  {{/aufgabe}}
13 13  
14 -{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich?" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}
14 +{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}
15 15  Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“//
16 16  
17 17  a) Untersuche, ob diese Aussage für alle Zahlen wahr ist.
... ... @@ -38,7 +38,7 @@
38 38  {{/aufgabe}}
39 39  
40 40  
41 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}}
41 +{{aufgabe id="Potenzen mit rationalen Exponenten: Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}}
42 42  Gib in Wurzelschreibweise an und berechne, wenn möglich.
43 43  (% style="list-style: alphastyle" %)
44 44  1. {{formula}}81^{\frac{1}{2}}{{/formula}}
... ... @@ -47,7 +47,7 @@
47 47  1. {{formula}}a^{\frac{8}{3}}{{/formula}}
48 48  {{/aufgabe}}
49 49  
50 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
50 +{{aufgabe id="Potenzen mit rationalen Exponenten: Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
51 51  Gib in Potenzschreibweise an und berechne, wenn möglich.
52 52  (% style="list-style: alphastyle" %)
53 53  1. {{formula}}\sqrt{3^5}{{/formula}}
... ... @@ -76,7 +76,7 @@
76 76  
77 77  {{/aufgabe}}
78 78  
79 -{{aufgabe id="Normdarstellungen: Was ist größer?" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}}
79 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Was ist größer" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}}
80 80  Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen:
81 81  
82 82  {{formula}}7 \cdot 10^{-5}{{/formula}},
... ... @@ -97,7 +97,7 @@
97 97  {{/aufgabe}}
98 98  
99 99  
100 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4 " quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}}
100 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}}
101 101  (% style="list-style: alphastyle" %)
102 102  1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an.
103 103  [[image:Taschenrechnerdisplay.png||width="100"]]
... ... @@ -106,5 +106,21 @@
106 106  [[image:Taschenrechnerdisplay_2.png||width="100"]]
107 107  {{/aufgabe}}
108 108  
109 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Maßeinheiten" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}}
110 +Ordne die Zahlen der folgenden Szenarien der richtigen Maßeinheit mit Normdarstellung zu.
111 +{{/aufgabe}}
112 +
113 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Darstellungwechsel" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}}
114 +Gegeben ist die Zahl {{formula}} 0,0004 {{/formula}}
115 +
116 +i) Stelle die Zahl jeweils in den folgenden Darstellungsformen dar:
117 +a) als vollständig gekürzter Bruch
118 +b) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}}
119 +c) als Zehnerpotenz
120 +d) als Zahl in Normdarstellung
121 +
122 +ii) Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein.
123 +{{/aufgabe}}
124 +
109 109  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
110 110