Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43

Von Version 185.1
bearbeitet von Sandra Vogt
am 2025/12/17 14:45
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 199.1
bearbeitet von Simone Schuetze
am 2025/12/18 10:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.sandravogt
1 +XWiki.simoneschuetze
Inhalt
... ... @@ -5,13 +5,13 @@
5 5  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen in Normdarstellung angeben.
6 6  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen.
7 7  
8 -{{aufgabe id="Potenzen mit rationalen Exponenten: Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}}
8 +{{aufgabe id="Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}}
9 9  Bestimme die fehlenden Zahlen in den Lücken und führe fort:
10 10  | {{formula}}\square{{/formula}} | {{formula}}3^2{{/formula}} | {{formula}}3^1{{/formula}} | {{formula}}3^0{{/formula}} | {{formula}}3^{-1}{{/formula}} | {{formula}}3^{-2}{{/formula}} | {{formula}}\square{{/formula}}
11 11  | 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}}
12 12  {{/aufgabe}}
13 13  
14 -{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich?" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}
14 +{{aufgabe id="Aussage zu rationalen Exponenten begründen" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}
15 15  Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“//
16 16  
17 17  a) Untersuche, ob diese Aussage für alle Zahlen wahr ist.
... ... @@ -21,7 +21,7 @@
21 21  
22 22  {{/aufgabe}}
23 23  
24 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
24 +{{aufgabe id="Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
25 25  Gib als Bruch an und berechne, wenn möglich.
26 26  (% style="list-style: alphastyle" %)
27 27  1. {{formula}}3^{-5}{{/formula}}
... ... @@ -30,7 +30,7 @@
30 30  1. {{formula}}27^{-\frac{1}{3}} {{/formula}}
31 31  {{/aufgabe}}
32 32  
33 -{{aufgabe id="Potenzen mit rationalen Exponenten: Wertetabelle fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
33 +{{aufgabe id="Wertetabelle mit rationalem Exponenten fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}}
34 34  Führe fort ..
35 35  
36 36  | {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}}
... ... @@ -38,7 +38,7 @@
38 38  {{/aufgabe}}
39 39  
40 40  
41 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}}
41 +{{aufgabe id="Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}}
42 42  Gib in Wurzelschreibweise an und berechne, wenn möglich.
43 43  (% style="list-style: alphastyle" %)
44 44  1. {{formula}}81^{\frac{1}{2}}{{/formula}}
... ... @@ -47,7 +47,7 @@
47 47  1. {{formula}}a^{\frac{8}{3}}{{/formula}}
48 48  {{/aufgabe}}
49 49  
50 -{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
50 +{{aufgabe id="Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}}
51 51  Gib in Potenzschreibweise an und berechne, wenn möglich.
52 52  (% style="list-style: alphastyle" %)
53 53  1. {{formula}}\sqrt{3^5}{{/formula}}
... ... @@ -55,7 +55,7 @@
55 55  1. {{formula}}\sqrt[a]{b^c}{{/formula}}
56 56  {{/aufgabe}}
57 57  
58 -{{aufgabe id="Potenzen mit rationalen Exponenten: Lücken" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}}
58 +{{aufgabe id="Lücken bei der Wurzel- und Potenzschreibweise" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}}
59 59  Ermittle die fehlenden Zahlen in den Lücken:
60 60  (% style="list-style: alphastyle" %)
61 61  1. {{formula}}a^{\frac{\square}{4}}=\sqrt[\square]{a^5}{{/formula}}
... ... @@ -76,7 +76,7 @@
76 76  
77 77  {{/aufgabe}}
78 78  
79 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Was ist größer?" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}}
79 +{{aufgabe id="Größenzuordnung bei Normdarstellung und Zehnerpotenzen" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}}
80 80  Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen:
81 81  
82 82  {{formula}}7 \cdot 10^{-5}{{/formula}},
... ... @@ -97,7 +97,7 @@
97 97  {{/aufgabe}}
98 98  
99 99  
100 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}}
100 +{{aufgabe id="Normdarstellung des Taschenrechners" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}}
101 101  (% style="list-style: alphastyle" %)
102 102  1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an.
103 103  [[image:Taschenrechnerdisplay.png||width="100"]]
... ... @@ -106,15 +106,17 @@
106 106  [[image:Taschenrechnerdisplay_2.png||width="100"]]
107 107  {{/aufgabe}}
108 108  
109 -{{aufgabe id="Normdarstellung und Zehnerpotenzen: Darstellungwechsel begründen" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}}
109 +{{aufgabe id="Darstellungwechsel begründen" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}}
110 110  Gegeben ist die Zahl {{formula}} 0,0004 {{/formula}}
111 111  
112 -Stelle die Zahl in verschiedenen Darstellungsformen dar:
112 +i) Stelle die Zahl jeweils in den folgenden Darstellungsformen dar:
113 113  a) als vollständig gekürzter Bruch
114 114  b) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}}
115 115  c) als Zehnerpotenz
116 116  d) als Zahl in Normdarstellung
117 +
118 +ii) Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein.
117 117  {{/aufgabe}}
118 118  
119 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
121 +{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="5"/}}
120 120