Änderungen von Dokument BPE 12.1 Potenzen mit rationalem Exponenten, Normdarstellung
Zuletzt geändert von Simone Schuetze am 2025/12/18 14:43
Von Version 199.1
bearbeitet von Simone Schuetze
am 2025/12/18 10:31
am 2025/12/18 10:31
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 170.1
bearbeitet von Sandra Vogt
am 2025/12/17 14:16
am 2025/12/17 14:16
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.s imoneschuetze1 +XWiki.sandravogt - Inhalt
-
... ... @@ -5,23 +5,27 @@ 5 5 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen in Normdarstellung angeben. 6 6 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann Zahlen aus dem Makro- oder Mikrozahlenbereich als Zehnerpotenzen darstellen. 7 7 8 -{{aufgabe id="Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}} 8 +{{aufgabe id="Potenzen mit rationalen Exponenten: Wertetabelle mit negativen Exponenten" afb="I" kompetenzen="K5" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA" zeit="2"}} 9 9 Bestimme die fehlenden Zahlen in den Lücken und führe fort: 10 10 | {{formula}}\square{{/formula}} | {{formula}}3^2{{/formula}} | {{formula}}3^1{{/formula}} | {{formula}}3^0{{/formula}} | {{formula}}3^{-1}{{/formula}} | {{formula}}3^{-2}{{/formula}} | {{formula}}\square{{/formula}} 11 11 | 27 | 9 | 3 | {{formula}}\square{{/formula}} | {{formula}}\square{{/formula}} |{{formula}}\square{{/formula}}| {{formula}}\square{{/formula}} 12 12 {{/aufgabe}} 13 13 14 -{{aufgabe id=" Aussagezurationalen Exponentenbegründen" afb="II" kompetenzen="K1, K5, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="5"}}15 -Ein Schüler behauptet: //„{{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}.“//14 +{{aufgabe id="Potenzen mit rationalen Exponenten: Stimmt das wirklich?" afb="I" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="2"}} 15 +Ein Schüler behauptet: {{formula}}x^{-1}{{/formula}} ist dasselbe wie {{formula}}-x{{/formula}}. 16 16 17 +Arbeitsauftrag: 18 + 17 17 a) Untersuche, ob diese Aussage für alle Zahlen wahr ist. 18 18 Begründe deine Entscheidung mithilfe eines geeigneten Beispiels oder Gegenbeispiels. 19 19 20 20 b) Erläutere, warum der Term {{formula}}0^{-1}{{/formula}} nicht definiert ist. 23 + 21 21 25 + 22 22 {{/aufgabe}} 23 23 24 -{{aufgabe id="Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 28 +{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz zum Bruch" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 25 25 Gib als Bruch an und berechne, wenn möglich. 26 26 (% style="list-style: alphastyle" %) 27 27 1. {{formula}}3^{-5}{{/formula}} ... ... @@ -30,7 +30,7 @@ 30 30 1. {{formula}}27^{-\frac{1}{3}} {{/formula}} 31 31 {{/aufgabe}} 32 32 33 -{{aufgabe id=" Wertetabellemit rationalemExponenten fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}}37 +{{aufgabe id="Potenzen mit rationalen Exponenten: Wertetabelle fortführen" afb="I" kompetenzen="K5" quelle="Holger Engels" cc="BY-SA" zeit="3"}} 34 34 Führe fort .. 35 35 36 36 | {{formula}}2^4{{/formula}} | {{formula}}2^2{{/formula}} | {{formula}}2^1{{/formula}} | {{formula}}2^{1/2}{{/formula}} | {{formula}}2^{1/4}{{/formula}} ... ... @@ -38,7 +38,7 @@ 38 38 {{/aufgabe}} 39 39 40 40 41 -{{aufgabe id="Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}} 45 +{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Potenz- zur Wurzelschreibweise" afb="II" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA"}} 42 42 Gib in Wurzelschreibweise an und berechne, wenn möglich. 43 43 (% style="list-style: alphastyle" %) 44 44 1. {{formula}}81^{\frac{1}{2}}{{/formula}} ... ... @@ -47,7 +47,7 @@ 47 47 1. {{formula}}a^{\frac{8}{3}}{{/formula}} 48 48 {{/aufgabe}} 49 49 50 -{{aufgabe id="Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 54 +{{aufgabe id="Potenzen mit rationalen Exponenten: Von der Wurzel- zur Potenzschreibweise" afb="I" kompetenzen="K5, K6" zeit="2" quelle="Böhringer, Hauptmann, Könings" cc="BY-SA"}} 51 51 Gib in Potenzschreibweise an und berechne, wenn möglich. 52 52 (% style="list-style: alphastyle" %) 53 53 1. {{formula}}\sqrt{3^5}{{/formula}} ... ... @@ -55,7 +55,7 @@ 55 55 1. {{formula}}\sqrt[a]{b^c}{{/formula}} 56 56 {{/aufgabe}} 57 57 58 -{{aufgabe id=" LückenbeiderWurzel- undPotenzschreibweise" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}}62 +{{aufgabe id="Potenzen mit rationalen Exponenten: Lücken" afb="II" kompetenzen="K5" quelle="Böhringer, Hauptmann,Könings" cc="BY-SA" zeit="3"}} 59 59 Ermittle die fehlenden Zahlen in den Lücken: 60 60 (% style="list-style: alphastyle" %) 61 61 1. {{formula}}a^{\frac{\square}{4}}=\sqrt[\square]{a^5}{{/formula}} ... ... @@ -64,6 +64,15 @@ 64 64 1. {{formula}}\sqrt[4]{d^{\frac{2}{3}}}= d^{\frac{\square}{6}}{{/formula}} 65 65 {{/aufgabe}} 66 66 71 +{{aufgabe id="Normdarstellung und Zehnerpotenzen: Symbole des Taschenrechners verstehen" afb="II" kompetenzen="K4, K5" zeit="4 " quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 72 +(% style="list-style: alphastyle" %) 73 +1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 74 +[[image:Taschenrechnerdisplay.png||width="100"]] 75 +1. Ermittle die Ausgabe des Taschenrechners in wissenschaftlicher Schreibweise. 76 +[[image:Taschenrechnerdisplay_1.png||width="100"]] 77 +[[image:Taschenrechnerdisplay_2.png||width="100"]] 78 +{{/aufgabe}} 79 + 67 67 {{aufgabe id="Normdarstellungen und Namen großer Zahlen mit Zehnerpotenzen" afb="II" kompetenzen="K5" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 68 68 i) Begründe, ob die Zahlen in a) und b) in Normdarstellung angegeben sind. 69 69 Verbessere gegebenenfalls. ... ... @@ -76,47 +76,7 @@ 76 76 77 77 {{/aufgabe}} 78 78 79 -{{aufgabe id="Größenzuordnung bei Normdarstellung und Zehnerpotenzen" afb="II" kompetenzen="K2, K4, K6" quelle="Team KS Offenburg" cc="BY-SA" zeit="3"}} 80 -Gegeben sind die folgenden Zahlen in der Form von Zehnerpotenzen: 81 81 82 -{{formula}}7 \cdot 10^{-5}{{/formula}}, 83 -{{formula}}1 \cdot 10^{2}{{/formula}}, 84 -{{formula}}1 \cdot 10^{-10}{{/formula}} 85 85 86 -Außerdem passen folgende Beispiele zu den gegebenen Größen: 87 -Länge eines Fußballfeldes 88 -Durchmesser eines Atoms 89 -Dicke eines menschlichen Haares 94 +{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 90 90 91 -a) Ordne die gegebenen Zahlen der Größe nach (von klein nach groß) und ordne sie gleichzeitig dem jeweils passenden Beispiel begründet zu. 92 - 93 -b) Erläutere, warum die Darstellung mit Zehnerpotenzen besonders geeignet ist, um sehr große und sehr kleine Größen miteinander zu vergleichen. 94 - 95 - 96 - 97 -{{/aufgabe}} 98 - 99 - 100 -{{aufgabe id="Normdarstellung des Taschenrechners" afb="II" kompetenzen="K4, K5" zeit="4" quelle="Böhringer, Hauptmann, Könings" cc="by-sa"}} 101 -(% style="list-style: alphastyle" %) 102 -1. Gib das Ergebnis des Taschenrechners in wissenschaftlicher Schreibweise und als Dezimalzahl an. 103 -[[image:Taschenrechnerdisplay.png||width="100"]] 104 -1. Ermittle die Ausgabe des Taschenrechners in wissenschaftlicher Schreibweise. 105 -[[image:Taschenrechnerdisplay_1.png||width="100"]] 106 -[[image:Taschenrechnerdisplay_2.png||width="100"]] 107 -{{/aufgabe}} 108 - 109 -{{aufgabe id="Darstellungwechsel begründen" afb="III" kompetenzen="K1, K2, K4, K6" zeit="6" quelle="Team KS Offenburg" cc="by-sa"}} 110 -Gegeben ist die Zahl {{formula}} 0,0004 {{/formula}} 111 - 112 -i) Stelle die Zahl jeweils in den folgenden Darstellungsformen dar: 113 -a) als vollständig gekürzter Bruch 114 -b) als Zahl mit negativem Exponenten der Form {{formula}}x^{-2}{{/formula}} 115 -c) als Zehnerpotenz 116 -d) als Zahl in Normdarstellung 117 - 118 -ii) Erläutere, worin sich diese Darstellungen unterscheiden und für welche Zwecke jeweils eine Darstellung besonders geeignet ist. Gehe dabei auf mindestens zwei verschiedene Darstellungsformen ein. 119 -{{/aufgabe}} 120 - 121 -{{seitenreflexion bildungsplan="5" kompetenzen="5" anforderungsbereiche="5" kriterien="5" menge="5"/}} 122 -