Änderungen von Dokument BPE 14.1 Wachstum und Zerfall
Zuletzt geändert von Simone Hochrein am 2026/02/03 10:11
Von Version 99.1
bearbeitet von Simone Hochrein
am 2026/02/02 15:53
am 2026/02/02 15:53
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 91.1
bearbeitet von Simone Hochrein
am 2026/02/02 13:49
am 2026/02/02 13:49
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -2,30 +2,30 @@ 2 2 3 3 [[Kompetenzen.K5]] [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann Wachstums- und Zerfallsvorgänge anhand von Tabellen, Schaubildern oder Texten als lineares oder exponentielles Wachstum deuten. 4 4 5 -{{aufgabe id="Erkennung Art des Wachstumsprozesses aus Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Simone Hochrein" cc="BY-SA" zeit="10"}} 6 -Gegeben sind vier Wachstumsprozesse ({{formula}}f{{/formula}}, {{formula}}g{{/formula}}, {{formula}}h{{/formula}}, {{formula}}j{{/formula}}). Entscheide für jeden Fall, ob es sich um lineares oder exponentielles Wachstum handelt sowie ob es sich um einen Wachstums- oder Zerfallsprozess handelt. Begründe Deine Antworten. 7 - 5 +{{aufgabe id="Erkennung Art des Wachstumsprozesses aus Wertetabelle" afb="II" kompetenzen="K4,K5,K6" quelle="Simone Hochrein" cc="BY-SA" zeit="10"}} 6 +Gegeben sind vier Wachstumsprozesse. Entscheide für jeden Fall, ob es sich um lineares oder exponentielles Wachstum handelt sowie ob es sich um einen Wachstums- oder Zerfallsprozess handelt. Begründe Deine Antworten. 7 +(%class=abc%) 8 +1. ((( **Tabelle:** 8 8 (% class="border" style="width:50%; text-align:center" %) 9 9 |{{formula}}x{{/formula}}|{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 10 -|{{formula}}f(x){{/formula}}|{{formula}}0,125{{/formula}}|{{formula}}0,25{{/formula}}|{{formula}}0,5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 11 -|{{formula}}g(x){{/formula}}|{{formula}}-3,5{{/formula}}|{{formula}}-1,5{{/formula}}|{{formula}}0,5{{/formula}}|{{formula}}2,5{{/formula}}|{{formula}}4,5{{/formula}} 12 -|{{formula}}h(x){{/formula}}|{{formula}}4,5{{/formula}}|{{formula}}3,75{{/formula}}|{{formula}}3{{/formula}}|{{formula}}2,25{{/formula}}|{{formula}}1,5{{/formula}} 13 -|{{formula}}j(x){{/formula}}|{{formula}}8{{/formula}}|{{formula}}4{{/formula}}|{{formula}}2{{/formula}}|{{formula}}1{{/formula}}|{{formula}}0,5{{/formula}} 14 -{{/aufgabe}} 15 - 16 -{{aufgabe id="Fortsetzung einer Wertetabelle" afb="II" kompetenzen="K4,K5,K6" quelle="Simone Hochrein" cc="BY-SA" zeit="15"}} 17 -Entscheide, ob es sich um lineares oder exponentielles Wachstum handelt und fülle die leeren Zellen. 18 - 11 +|{{formula}}f(x){{/formula}}|{{formula}}0,125{{/formula}}|{{formula}}0,25{{/formula}}|{{formula}}0,5{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}))) 12 +1. ((( **Tabelle:** 19 19 (% class="border" style="width:50%; text-align:center" %) 20 -|{{formula}}x{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}}|{{formula}}3{{/formula}}|{{formula}}4{{/formula}}|{{formula}}5{{/formula}}|{{formula}}6{{/formula}}|{{formula}}7{{/formula}} 21 -|{{formula}}f(x){{/formula}}|||{{formula}}1{{/formula}}|{{formula}}2,5{{/formula}}|{{formula}}4{{/formula}}|||{{formula}}8,5{{/formula}} 22 -|{{formula}}g(x){{/formula}}|||{{formula}}18{{/formula}}|{{formula}}54{{/formula}}||{{formula}}486{{/formula}}|{{formula}}1458{{/formula}}| 23 -|{{formula}}h(x){{/formula}}||5|||{{formula}}\frac{5}{8}{{/formula}}|{{formula}}\frac{5}{16}{{/formula}}|{{formula}}\frac{5}{32}{{/formula}}| 24 -|{{formula}}j(x){{/formula}}||{{formula}}0{{/formula}}|{{formula}}-3{{/formula}}|||{{formula}}-12{{/formula}}|| 14 +|{{formula}}x{{/formula}}|{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 15 +|{{formula}}f(x){{/formula}}|{{formula}}8{{/formula}}|{{formula}}4{{/formula}}|{{formula}}2{{/formula}}|{{formula}}1{{/formula}}|{{formula}}0,5{{/formula}}))) 16 +1. ((( **Tabelle:** 17 +(% class="border" style="width:50%; text-align:center" %) 18 +|{{formula}}x{{/formula}}|{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 19 +|{{formula}}f(x){{/formula}}|{{formula}}-3,5{{/formula}}|{{formula}}-1,5{{/formula}}|{{formula}}0,5{{/formula}}|{{formula}}2,5{{/formula}}|{{formula}}4,5{{/formula}} 20 +))) 21 +1. ((( **Tabelle:** 22 +(% class="border" style="width:50%; text-align:center" %) 23 +|{{formula}}x{{/formula}}|{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} 24 +|{{formula}}f(x){{/formula}}|{{formula}}4,5{{/formula}}|{{formula}}3,75{{/formula}}|{{formula}}3{{/formula}}|{{formula}}2,25{{/formula}}|{{formula}}1,5{{/formula}} 25 +))) 25 25 26 26 {{/aufgabe}} 27 27 28 - 29 29 {{aufgabe id="Lineares oder Exponentielles Wachstum/Zerfall" afb="I" kompetenzen="K4,K5,K6" quelle="Simone Schütze, Ansgar Wasmer" cc="BY-SA" zeit="10"}} 30 30 Beurteile, ob es sich bei den im Folgenden dargestellten Vorgängen um ein lineares oder um ein exponentielles Wachstum/Zerfall handelt. Begründe jeweils deine Entscheidung. 31 31