Änderungen von Dokument BPE 14.1 Wachstum und Zerfall
Zuletzt geändert von Simone Hochrein am 2026/02/03 10:11
Von Version 99.1
bearbeitet von Simone Hochrein
am 2026/02/02 15:53
am 2026/02/02 15:53
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 97.1
bearbeitet von Simone Hochrein
am 2026/02/02 15:46
am 2026/02/02 15:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -3,7 +3,7 @@ 3 3 [[Kompetenzen.K5]] [[Kompetenzen.K4]] [[Kompetenzen.K6]] Ich kann Wachstums- und Zerfallsvorgänge anhand von Tabellen, Schaubildern oder Texten als lineares oder exponentielles Wachstum deuten. 4 4 5 5 {{aufgabe id="Erkennung Art des Wachstumsprozesses aus Wertetabelle" afb="I" kompetenzen="K4,K5,K6" quelle="Simone Hochrein" cc="BY-SA" zeit="10"}} 6 -Gegeben sind vier Wachstumsprozesse ({{formula}}f{{/formula}}, {{formula}}g{{/formula}}, {{formula}}h{{/formula}}, {{formula}}j{{/formula}}). Entscheide für jeden Fall, ob es sich um lineares oder exponentielles Wachstum handelt sowie ob es sich um einen Wachstums- oder Zerfallsprozess handelt. Begründe Deine Antworten.6 +Gegeben sind vier Wachstumsprozesse. Entscheide für jeden Fall, ob es sich um lineares oder exponentielles Wachstum handelt sowie ob es sich um einen Wachstums- oder Zerfallsprozess handelt. Begründe Deine Antworten. 7 7 8 8 (% class="border" style="width:50%; text-align:center" %) 9 9 |{{formula}}x{{/formula}}|{{formula}}-2{{/formula}}|{{formula}}-1{{/formula}}|{{formula}}0{{/formula}}|{{formula}}1{{/formula}}|{{formula}}2{{/formula}} ... ... @@ -21,7 +21,7 @@ 21 21 |{{formula}}f(x){{/formula}}|||{{formula}}1{{/formula}}|{{formula}}2,5{{/formula}}|{{formula}}4{{/formula}}|||{{formula}}8,5{{/formula}} 22 22 |{{formula}}g(x){{/formula}}|||{{formula}}18{{/formula}}|{{formula}}54{{/formula}}||{{formula}}486{{/formula}}|{{formula}}1458{{/formula}}| 23 23 |{{formula}}h(x){{/formula}}||5|||{{formula}}\frac{5}{8}{{/formula}}|{{formula}}\frac{5}{16}{{/formula}}|{{formula}}\frac{5}{32}{{/formula}}| 24 -|{{formula}} j(x){{/formula}}||{{formula}}0{{/formula}}|{{formula}}-3{{/formula}}|||{{formula}}-12{{/formula}}||24 +|{{formula}}i(x){{/formula}}||{{formula}}0{{/formula}}|{{formula}}-3{{/formula}}|||{{formula}}-12{{/formula}}|| 25 25 26 26 {{/aufgabe}} 27 27