Änderungen von Dokument BPE 2.1 Äquivalenzumformungen
Zuletzt geändert von Martina Wagner am 2025/11/27 09:27
Von Version 44.1
bearbeitet von Stephanie Wietzorek
am 2025/11/18 07:49
am 2025/11/18 07:49
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 32.1
bearbeitet von Stephanie Wietzorek
am 2025/11/17 15:07
am 2025/11/17 15:07
Änderungskommentar:
Neues Bild Trapez.png hochladen
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -53,16 +53,6 @@ 53 53 | 9) {{formula}}3 + \frac{1}{2}b + \frac{1}{3}b - 2b = 4 + \frac{1}{6}b{{/formula}} | L = 54 54 {{/aufgabe}} 55 55 56 -{{aufgabe id="Lösungsvielfalt?" afb="III" quelle="Simone Kanzler, Stephanie WIetzorek" kompetenzen="K1, K6" zeit="" cc="by-sa"}} 57 - 58 -Es ist folgende Gleichung gegeben: 59 - 60 -{{formula}} x \cdot (2x - 🖤)=2x^2 + 3x {{/formula}} 61 - 62 -Für 🖤 darf eine beliebige reelle Zahl eingesetzt werden. Begründe, dass die Gleichung immer lösbar ist und gehe auf die Anzahl an Lösungen ein. 63 - 64 -{{/aufgabe}} 65 - 66 66 {{aufgabe id="Richtig oder falsch?" afb="I" quelle="Team Mathebrücke" kompetenzen="K1, K6" zeit="" cc="by-sa" tags="mathebrücke"}} 67 67 68 68 Gib an, welche der folgenden Aussagen wahr sind. Begründe deine Entscheidung. ... ... @@ -80,7 +80,7 @@ 80 80 Gib die Defintionsmenge der Brüche an. 81 81 (% style="width: 100%; white-space: nowrap" class="border" %) 82 82 |= Bruch |= Definitionsmenge 83 -| 1) {{formula}}\frac{2}{x}{{/formula}} | D = 73 +| 1) {{formula}}\frac{2}{x}{{/formula}} | D = 84 84 | 2) {{formula}}\frac{x}{2}{{/formula}} | D = 85 85 | 3) {{formula}}\frac{3+x}{x-2}{{/formula}} | D = 86 86 | 4) {{formula}}\frac{4}{3x}-\frac{2x+1}{3x-1}{{/formula}} | D = ... ... @@ -91,11 +91,11 @@ 91 91 Finde den Hauptnenner folgender Brüche 92 92 (%class="123"%) 93 93 94 -1. {{formula}}\frac{1}{x}; \frac{2}{x-4} {{/formula}} 95 -1. {{formula}}\frac{x}{5x+2}; \frac{1}{10x+4} {{/formula}} 96 -1. {{formula}}\frac{4}{x-1}; \frac{2}{x+1} {{/formula}} 97 -1. {{formula}}\frac{1}{x-2}; \frac{x}{x^2-4x+4} {{/formula}} 98 -1. {{formula}}\frac{1}{b-7}; \frac{1}{7-b} {{/formula}} 84 + 1. {{formula}}\frac{1}{x}; \frac{2}{x-4} {{/formula}} 85 + 1. {{formula}}\frac{x}{5x+2}; \frac{1}{10x+4} {{/formula}} 86 + 1. {{formula}}\frac{4}{x-1}; \frac{2}{x+1} {{/formula}} 87 + 1. {{formula}}\frac{1}{x-2}; \frac{x}{x^2-4x+4} {{/formula}} 88 + 1. {{formula}}\frac{1}{b-7}; \frac{1}{7-b} {{/formula}} 99 99 {{/aufgabe}} 100 100 101 101 {{aufgabe id="Überprüfen der Lösung" afb="III" kompetenzen="K1, K2, K6" zeit="7" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} ... ... @@ -147,26 +147,5 @@ 147 147 Forme die Formel nach {{formula}} s {{/formula}} und {{formula}} t {{/formula}} um. 148 148 {{/aufgabe}} 149 149 150 -{{aufgabe id="Trapez" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 151 -Ein Trapez ist ein besonderes Viereck mit zwei parallelen Seiten, welche den Abstand {{formula}} h{{/formula}} voneinander besitzen. Die längere der parallelen Seiten soll mit {{formula}} a {{/formula}}, die kürzere mit {{formula}} c {{/formula}} bezeichnet werden. 152 -[[image:Trapez.png||style="float:right;width:400px"]] 153 - (%class="abc"%) 154 - 1. Beschrifte das Trapez gemäß der obigen Angaben mit den Parametern {{formula}} a {{/formula}},{{formula}} c {{/formula}} und{{formula}} h {{/formula}}. 155 - 1. Der Flächeninahlt {{formula}} A {{/formula}} des Trapezes kann berechnet werden, indem man die Hälfte der Summe aus den beiden parallelen Seiten mit dem Abstand der beiden parallelen Seiten multipliziert. Stelle diese Formel für {{formula}} A {{/formula}} auf. 156 - 1. Überprüfe, ob man die Höhe h mit der Formel {{formula}} 2 \cdot \frac{A}{a+c} {{/formula}} berechnen kann. 157 - 1. Forme die Formel für den Flächeninhalt des Trapezes mit Hilfe von Äquivalenzumformungen nach der längeren Seite um. 158 - 159 -{{/aufgabe}} 160 - 161 -{{aufgabe id="Bremsweg" afb="II" kompetenzen="K1, K2, K4, K5" zeit="" quelle="Simone Kanzler, Stephanie Wietzorek" cc="BY-SA"}} 162 -Der Bremsweg {{formula}} s {{/formula}} in Metern ist die Strecke, die ein Fahrzeug nach dem Betätigen der Bremse noch zurücklegt, bis es vollständig zum Stehen kommt. 163 -In der Fahrschule lernt man die vereinfachte Formel {{formula}} s = \frac{V}{10}\cdot \frac{V}{10} {{/formula}}, wobei {{formula}} V {{/formula}} die Geschwindigkeit zum Bremszeitpunkt in {{formula}} \frac{km}{h} {{/formula}} beschreibt. 164 -In der Physik würde man den Bremsweg {{formula}} s {{/formula}} mit der Formel {{formula}} s = \frac{V^2}{2a} {{/formula}} berechnen, wobei {{formula}} V {{/formula}} in {{formula}} \frac{m}{s} {{/formula}} angegeben wird und {{formula}} a {{/formula}} eine Bremsverzögerung beschreibt. Diese Bremsverzögerung liegt bei einer Alltagsbremsung bei {{formula}} 3 < a < 5 {{/formula}}. 165 - (%class="abc"%) 166 -1. Berechne den Bremsweg in Metern mit der Formel aus der Fahrschule für eine Geschwindigkeit von {{formula}} 50 \frac{km}{h}{{/formula}} zum Zeitpunkt des Bremsvorgangs. 167 -1. Berechne den Bremsweg mit der Formel aus der Physik für die selbe Geschwindigkeit zum Zeitpunkt des Bremsvorgangs für {{formula}} a = 4 {{/formula}} 168 -1. Erläutere, warum sich die Formel aus der Fahrschule zur vereinfachten Rechnung für eine Alltagsbremsung eignet. 169 -{{/aufgabe}} 170 - 171 171 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 172 172
- Trapez.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.wies - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -14.4 KB - Inhalt