Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 08:35
Von Version 15.3
bearbeitet von Dirk Tebbe
am 2025/11/05 13:24
am 2025/11/05 13:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 13.1
bearbeitet von Dirk Tebbe
am 2025/11/05 13:01
am 2025/11/05 13:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -8,12 +8,11 @@ 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 10 {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}} 11 +Die Mittelsenkrechte ist die Gerade, die eine Strecke {{formula}}\overline{AB}{{/formula}} halbiert und senkrecht zu dieser steht. 11 11 12 - 13 13 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. 14 14 (%class=abc%) 15 -1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 16 -1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 15 +1. Berechne die Gleichung der Gerade, die durch {{formula}}A{{/formula}}und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild. 17 17 1. Berechne die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild. 18 18 1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt. 19 19