Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 08:35
Von Version 15.3
bearbeitet von Dirk Tebbe
am 2025/11/05 13:24
am 2025/11/05 13:24
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 19.1
bearbeitet von Dirk Tebbe
am 2025/11/05 15:21
am 2025/11/05 15:21
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -7,7 +7,7 @@ 7 7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen. 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 -{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}10 +{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}} 11 11 12 12 13 13 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. ... ... @@ -14,16 +14,28 @@ 14 14 (%class=abc%) 15 15 1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 16 16 1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 17 -1. Berechne die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild. 18 -1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt. 17 +1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft. 18 +1. Beschreibe welche Bedeutung hat Punkt {{formula}}S{{/formula}} für das Dreieck hat. 19 +{{/aufgabe}} 19 19 20 -{{lehrende versteckt=1}} 21 -* Umgang mit Formeln 22 -* Mehrere Schritte planen und durchführen 23 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 24 -{{/lehrende}} 21 +{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}} 22 + 23 + 24 +Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser im einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(5|6){{/formula}} und Moritz in {{formula}}M(6|5){{/formula}}. 25 +(%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}. 26 +1. Untersuche, wer von den drei Kindern von seinem Wohnort zu den beiden Haltestellen jeweils den gleichen Weg hat. 27 +1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen. 25 25 {{/aufgabe}} 26 26 30 +{{aufgabe id="Anwendungsaufgabe zu Lotfällen und Mittelparallele" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}} 31 + 32 + 33 + 34 +1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein. 35 +1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an. 36 +1. Konstruiere die Gerade, die von Gerade {{formula}}g{{/formula}} und Punkt P {{formula}}P{{/formula}} den gleichen Abstand hat. 37 +{{/aufgabe}} 38 + 27 27 {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}} 28 28 Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite. 29 29