Zuletzt geändert von Holger Engels am 2025/12/01 08:35

Von Version 16.1
bearbeitet von Dirk Tebbe
am 2025/11/05 13:29
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von Dirk Tebbe
am 2025/11/05 13:35
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -7,7 +7,7 @@
7 7  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 -{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
10 +{{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="10" cc="by-sa"}}
11 11  
12 12  
13 13  Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
... ... @@ -15,15 +15,6 @@
15 15  1. Zeichne die drei Punkte {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
16 16  1. Die beiden Mittelsenktechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Miß jeweils die Entfernung von Punkt S zu den drei Punkten {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
17 17  1. Überprüfe durch Konstruktion, ob die Mittelsenktrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt S verläuft.
18 -
19 - Berechne die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild.
20 -1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt.
21 -
22 -{{lehrende versteckt=1}}
23 -* Umgang mit Formeln
24 -* Mehrere Schritte planen und durchführen
25 -* Selbstkontrolle durch Vergleich Rechnung - Zeichnung
26 -{{/lehrende}}
27 27  {{/aufgabe}}
28 28  
29 29  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}