Änderungen von Dokument BPE 5.1 Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/06/18 08:17
Von Version 3.1
bearbeitet von Holger Engels
am 2025/06/18 07:54
am 2025/06/18 07:54
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 4.1
bearbeitet von Holger Engels
am 2025/06/18 08:17
am 2025/06/18 08:17
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -7,5 +7,25 @@ 7 7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen. 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 -{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}} 10 +{{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 11 +Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite. 11 11 13 +Ein Dreieck im Koordinatensystem hat die Ecken {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}}. 14 +(%class=abc%) 15 +1. Berechne die Gleichung der Gerade, die durch {{formula}}A{{/formula}}und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild. 16 +1. Berechne die Gleichung der Gerade, die durch {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild. 17 +1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne den Schwerpunkt. 18 + 19 +{{lehrende}} 20 +**Sinn dieser Aufgabe:** 21 +* Umgang mit Formeln 22 +* Mehrere Schritte planen und durchführen 23 +* Selbstkontrolle durch Vergleich Rechnung - Zeichnung 24 +{{/lehrende}} 25 +{{/aufgabe}} 26 + 27 +{{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen="" cc="by-sa" tags="mathebrücke"}} 28 +Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}. 29 +{{/aufgabe}} 30 + 31 +{{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}