BPE 5.1 Geometrie im Dreieck
Inhalt
K4 K5 Ich kann Ortslinien, Höhen im Dreieck und Seitenhalbierende grafisch darstellen.
K4 K5 Ich kann geometrische Probleme zeichnerisch lösen.
K4 K5 Ich kann besondere Punkte im Dreieck mithilfe von Zirkel und Lineal ermitteln.
K1 K4 K6 Ich kann Konstruktionen besonderer Punkte im Dreieck begründen.
K1 K6 Ich kann den Satz des Thales beweisen.
K4 K5 Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
Aufgabe 1 Seitenhalbierende im Dreieck 𝕃
Die Seitenhalbierende in einem Dreieck verbinden jeweils eine Ecke des Dreiecks mit der Mitte der gegenüberliegenden Seite.
Ein Dreieck im Koordinatensystem hat die Ecken und
.
- Berechne die Gleichung der Gerade, die durch
und durch den Mittelpunkt der Strecke
geht. Überprüfe dein Ergebnis in einem Schaubild.
- Berechne die Gleichung der Gerade, die durch
und durch den Mittelpunkt der Strecke
geht. Überprüfe dein Ergebnis im Schaubild.
- Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne den Schwerpunkt.
Inhalt für Lehrende (Anmeldung erforderlich)
AFB II | Kompetenzen k.A. | Bearbeitungszeit k.A. |
Quelle Team Mathebrücke | Lizenz CC BY-SA |
Aufgabe 2 Umfang eines Dreiecks 𝕃
Berechne den Umfang des Dreiecks mit
.
AFB II | Kompetenzen k.A. | Bearbeitungszeit k.A. |
Quelle Team Mathebrücke | Lizenz CC BY-SA |
Kompetenzmatrix und Seitenreflexion
K1 | K2 | K3 | K4 | K5 | K6 | |
---|---|---|---|---|---|---|
I | 0 | 0 | 0 | 0 | 0 | 0 |
II | 0 | 0 | 0 | 0 | 0 | 0 |
III | 0 | 0 | 0 | 0 | 0 | 0 |
Abdeckung Bildungsplan | ||
---|---|---|
Abdeckung Kompetenzen | ||
Abdeckung Anforderungsbereiche | ||
Eignung gemäß Kriterien | ||
Umfang gemäß Mengengerüst |