Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 08:35
Von Version 31.1
bearbeitet von kerstinhauptmann
am 2025/11/06 09:01
am 2025/11/06 09:01
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 26.1
bearbeitet von kerstinhauptmann
am 2025/11/05 16:08
am 2025/11/05 16:08
Änderungskommentar:
Neues Bild Haltestelle .svg hochladen
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -12,11 +12,11 @@ 12 12 (%class=abc%) 13 13 1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 14 14 1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 15 -1. Ermittlegrafischdurch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.15 +1. Überprüfe durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft. 16 16 1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat. 17 17 {{/aufgabe}} 18 18 19 -{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K3, K4, K6" zeit="10" cc="by-sa"}}19 +{{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K3, K4," zeit="10" cc="by-sa"}} 20 20 Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}. 21 21 (%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}. 22 22 1. Untersuche, welches der Kinder von seinem Wohnort zu den beiden Haltestellen gleich weit hat. ... ... @@ -34,8 +34,8 @@ 34 34 35 35 Ein Dreieck im Koordinatensystem hat die Eckpunkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}}. 36 36 (%class=abc%) 37 -1. Be stimme die Gleichung der Gerade, die durch {{formula}}A{{/formula}}und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild.38 -1. Be stimme die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild.37 +1. Berechne die Gleichung der Gerade, die durch {{formula}}A{{/formula}}und durch den Mittelpunkt der Strecke {{formula}}BC{{/formula}} geht. Überprüfe dein Ergebnis in einem Schaubild. 38 +1. Berechne die Gleichung der Gerade, die durch den Punkt {{formula}}B{{/formula}} und durch den Mittelpunkt der Strecke {{formula}}AC{{/formula}} geht. Überprüfe dein Ergebnis im Schaubild. 39 39 1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt. 40 40 {{/aufgabe}} 41 41
- Haltestelle.ggb
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.kerstinhauptmann - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -22.9 KB - Inhalt