Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 36.1
bearbeitet von kerstinhauptmann
am 2025/11/06 12:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 48.1
bearbeitet von kerstinhauptmann
am 2025/11/06 13:40
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -8,9 +8,10 @@
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 10  {{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}}
11 -Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
12 -(%class=abc%)
13 -1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
11 +
12 +1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}.
13 +1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}.
14 +1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}.
14 14  1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
15 15  1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.
16 16  1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat.
... ... @@ -32,10 +32,11 @@
32 32  1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
33 33  {{/aufgabe}}
34 34  
35 -{{aufgabe id="Anwendungsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
36 -1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein.
37 -1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an.
38 -1. Konstruiere die Gerade, die von {{formula}}g{{/formula}} und {{formula}}P{{/formula}} den gleichen Abstand hat.
36 +{{aufgabe id="Konstruktionsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
37 +1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}A(2|4){{/formula}} in ein Koordinatensystem ein.
38 +1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}A{{/formula}} verläuft. Gib ihre Gleichung an.
39 +1. Konstruiere die Parallele {{formula}}p{{/formula}} zu {{formula}}g{{/formula}}, die durch {{formula}}A{{/formula}} verläuft.
40 +1. Konstruiere zu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}.
39 39  {{/aufgabe}}
40 40  
41 41  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
Konstruktionsaufgabe.ggb
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +36.8 KB
Inhalt
Konstruktionsaufgabe.svg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.kerstinhauptmann
Größe
... ... @@ -1,0 +1,1 @@
1 +81.5 KB
Inhalt