Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 19:31
Von Version 40.1
bearbeitet von kerstinhauptmann
am 2025/11/06 12:46
am 2025/11/06 12:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 83.1
bearbeitet von Holger Engels
am 2025/12/01 08:35
am 2025/12/01 08:35
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. kerstinhauptmann1 +XWiki.holgerengels - Inhalt
-
... ... @@ -7,15 +7,6 @@ 7 7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen. 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 -{{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}} 11 -Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. 12 -(%class=abc%) 13 -1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte. 14 -1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest? 15 -1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft. 16 -1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat. 17 -{{/aufgabe}} 18 - 19 19 {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}} 20 20 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. 21 21 (%class=abc%) ... ... @@ -26,17 +26,18 @@ 26 26 {{/aufgabe}} 27 27 28 28 {{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K3, K4,K6" zeit="10" cc="by-sa"}} 29 -Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}. 30 -(%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.20 +Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}. Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}. 21 +(%class=abc%) 31 31 1. Untersuche, welches der Kinder von seinem Wohnort zu den beiden Haltestellen gleich weit hat. 32 32 1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen. 33 33 {{/aufgabe}} 34 34 35 35 {{aufgabe id="Konstruktionsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}} 27 +(%class=abc%) 36 36 1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}A(2|4){{/formula}} in ein Koordinatensystem ein. 37 37 1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}A{{/formula}} verläuft. Gib ihre Gleichung an. 38 38 1. Konstruiere die Parallele {{formula}}p{{/formula}} zu {{formula}}g{{/formula}}, die durch {{formula}}A{{/formula}} verläuft. 39 -1. Konstruiere diezu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}.31 +1. Konstruiere zu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}. 40 40 {{/aufgabe}} 41 41 42 42 {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}} ... ... @@ -53,5 +53,4 @@ 53 53 Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}. 54 54 {{/aufgabe}} 55 55 56 - 57 57 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
- Konstruktionsaufgabe.ggb
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.kerstinhauptmann - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +36.8 KB - Inhalt
- Konstruktionsaufgabe.svg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.kerstinhauptmann - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +81.5 KB - Inhalt