Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 43.1
bearbeitet von kerstinhauptmann
am 2025/11/06 13:10
Änderungskommentar: Neuen Anhang Konstruktionsaufgabe.ggb hochladen
Auf Version 55.1
bearbeitet von kerstinhauptmann
am 2025/11/06 14:16
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -8,12 +8,19 @@
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 10  {{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}}
11 -Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
12 -(%class=abc%)
13 -1. Zeichne {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}} in ein Koordinatensystem ein und konstruiere zur Strecke {{formula}}\overline{AB}{{/formula}} und zur Strecke {{formula}}\overline{AC}{{/formula}} jeweils die Mittelsenkrechte.
14 -1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
15 -1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.
16 -1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat.
11 +
12 +1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}.
13 +1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}.
14 +1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}.
15 +1. Zeichne drei weitere beliebige Geraden durch den Mittelpunkt {{formula}}M{{/formula}}.
16 +1. Zeichne einen Kreis mit dem Radius {{formula}}r=10cm{{/formula}}.
17 +1. Die Geraden schneiden den Kreis jeweils in den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
18 +1. Messe jeweils die Abstände von A und B zu den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
19 +1. Gibt es einen Punkt {{formula}}S_i{{/formula}}, für den der Abstand zu den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}} annähernd oder sogar exakt gleich ist?
20 +1. Zeichne einen weiteren Kreis um {{formula}}A{{/formula}} mit beliebigem Radius {{formula}}r{{/formula}}.
21 +Untersuche auch hier die Abstände von den Schnittpunkten der Geraden mit dem neuen Kreis und den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}}.
22 +1. Erläutere, welche Eigenschaften die Schnittpunkte haben, die auf der Senkrechten zur Strecke {{formula}}\overline{AB}{{/formula}} liegen.
23 +Überlege einen passenden Namen zu dieser Geraden.
17 17  {{/aufgabe}}
18 18  
19 19  {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}