Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 53.1
bearbeitet von kerstinhauptmann
am 2025/11/06 14:11
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 44.1
bearbeitet von kerstinhauptmann
am 2025/11/06 13:26
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -9,18 +9,10 @@
9 9  
10 10  {{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}}
11 11  
12 -1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}.
13 -1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}.
14 -1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}.
15 -1. Zeichne drei weitere beliebige Geraden durch den Mittelpunkt {{formula}}M{{/formula}}.
16 -1. Zeichne einen Kreis mit dem Radius {{formula}}r=10cm{{/formula}}.
17 -1. Die Geraden schneiden den Kreis jeweils in den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
18 -1. Messe jeweils die Abstände von A und B zu den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
19 -1. Gibt es einen Punkt {{formula}}S_i{{/formula}} für den der Abstand zu den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}} annähernd oder sogar exakt gleich ist.
20 -1. Zeichne einen weiteren Kreis um {{formula}}A{{/formula}} mit beliebeigem Radius {{formula}}r{/formula}}.
21 - Untersuche auch hier die Abstände von den Schnittpunkten der Geraden mit dem neuen Kreis und den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}}.
22 -1. Erläutere, welche Eigenschaften die Schnittpunkte haben, die auf der Senkrechten zur Strecke {{formula}}\overline{AB}{{/formula}} liegen.
23 - Überlege einen passenden Namen zu dieser Geraden.
12 +1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}{{/formula}}=8 cm.
13 +1. Die beiden Mittelsenkrechten schneiden sich in einem Punkt {{formula}}S{{/formula}}. Messe jeweils die Entfernung von {{formula}}S{{/formula}} zu {{formula}}A, B{{/formula}} und {{formula}}C{{/formula}}. Was stellst du fest?
14 +1. Ermittle grafisch durch Konstruktion, ob die Mittelsenkrechte der Strecke {{formula}}\overline{BC}{{/formula}} ebenfalls durch den Punkt {{formula}}S{{/formula}} verläuft.
15 +1. Beschreibe, welche Bedeutung Punkt {{formula}}S{{/formula}} für das Dreieck {{formula}}ABC{{/formula}} hat.
24 24  {{/aufgabe}}
25 25  
26 26  {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}