Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 55.2
bearbeitet von Holger Engels
am 2025/11/10 19:48
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 84.1
bearbeitet von Holger Engels
am 2025/12/01 19:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -7,22 +7,6 @@
7 7  [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen.
8 8  [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen.
9 9  
10 -{{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}}
11 -(%class=abc%)
12 -1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}.
13 -1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}.
14 -1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}.
15 -1. Zeichne drei weitere beliebige Geraden durch den Mittelpunkt {{formula}}M{{/formula}}.
16 -1. Zeichne einen Kreis mit dem Radius {{formula}}r=10cm{{/formula}}.
17 -1. Die Geraden schneiden den Kreis jeweils in den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
18 -1. Messe jeweils die Abstände von A und B zu den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}.
19 -1. Gibt es einen Punkt {{formula}}S_i{{/formula}}, für den der Abstand zu den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}} annähernd oder sogar exakt gleich ist?
20 -1. Zeichne einen weiteren Kreis um {{formula}}A{{/formula}} mit beliebigem Radius {{formula}}r{{/formula}}.
21 -Untersuche auch hier die Abstände von den Schnittpunkten der Geraden mit dem neuen Kreis und den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}}.
22 -1. Erläutere, welche Eigenschaften die Schnittpunkte haben, die auf der Senkrechten zur Strecke {{formula}}\overline{AB}{{/formula}} liegen.
23 -Überlege einen passenden Namen zu dieser Geraden.
24 -{{/aufgabe}}
25 -
26 26  {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}}
27 27  Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben.
28 28  (%class=abc%)
... ... @@ -57,8 +57,4 @@
57 57  1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt.
58 58  {{/aufgabe}}
59 59  
60 -{{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen=" K5" zeit="5" cc="by-sa" tags="mathebrücke"}}
61 -Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}.
62 -{{/aufgabe}}
63 -
64 64  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}