Zuletzt geändert von Holger Engels am 2025/12/01 19:31

Von Version 84.1
bearbeitet von Holger Engels
am 2025/12/01 19:31
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 34.1
bearbeitet von kerstinhauptmann
am 2025/11/06 10:20
Änderungskommentar: Neues Bild Grundkonstruktion Mittelsenkrechte.svg hochladen

Zusammenfassung

Details

Seiteneigenschaften
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.kerstinhauptmann
Inhalt
... ... @@ -17,18 +17,16 @@
17 17  {{/aufgabe}}
18 18  
19 19  {{aufgabe id="Haltestellen" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K3, K4,K6" zeit="10" cc="by-sa"}}
20 -Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}. Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.
21 -(%class=abc%)
20 +Leo, Karmen und Moritz wohnen im gleichen Ort. Stellt man ihre Wohnhäuser in einem Koordinatensystem dar, dann wohnt Leo in {{formula}}L(-1|-7){{/formula}}, Karmen in {{formula}}K(4|6){{/formula}} und Moritz in {{formula}}M(8|8){{/formula}}.
21 +(%class=abc%) Alle drei fahren mit dem Bus zur Schule. Die Bushaltestellen befinden sich in den Punkten {{formula}}A(-2|1){{/formula}} und {{formula}}B(6|-3){{/formula}}.
22 22  1. Untersuche, welches der Kinder von seinem Wohnort zu den beiden Haltestellen gleich weit hat.
23 23  1. Ermittle weitere Punkte, die von den beiden Haltestellen jeweils gleich weit entfernt sind und nenne die Ortslinie, auf der all diese Punkte liegen.
24 24  {{/aufgabe}}
25 25  
26 -{{aufgabe id="Konstruktionsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
27 -(%class=abc%)
28 -1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}A(2|4){{/formula}} in ein Koordinatensystem ein.
29 -1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}A{{/formula}} verläuft. Gib ihre Gleichung an.
30 -1. Konstruiere die Parallele {{formula}}p{{/formula}} zu {{formula}}g{{/formula}}, die durch {{formula}}A{{/formula}} verläuft.
31 -1. Konstruiere zu {{formula}}g{{/formula}} und {{formula}}p{{/formula}} die Mittelparallele {{formula}}m{{/formula}}.
26 +{{aufgabe id="Anwendungsaufgabe" afb="II" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K4, K5" zeit="15" cc="by-sa"}}
27 +1. Zeichne die Gerade {{formula}}g:y=-0,5\cdot x - 2{{/formula}} und den Punkt {{formula}}P(2|4){{/formula}} in ein Koordinatensystem ein.
28 +1. Konstruiere die Gerade, die senkrecht zu {{formula}}g{{/formula}} steht und durch {{formula}}P{{/formula}} geht. Gib ihre Gleichung an.
29 +1. Konstruiere die Gerade, die von {{formula}}g{{/formula}} und {{formula}}P{{/formula}} den gleichen Abstand hat.
32 32  {{/aufgabe}}
33 33  
34 34  {{aufgabe id="Seitenhalbierende im Dreieck" afb="II" quelle="Team Mathebrücke" kompetenzen="K4, K5" zeit="10" cc="by-sa" tags="mathebrücke"}}
... ... @@ -41,4 +41,9 @@
41 41  1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt.
42 42  {{/aufgabe}}
43 43  
42 +{{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen=" K5" zeit="5" cc="by-sa" tags="mathebrücke"}}
43 +Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}.
44 +{{/aufgabe}}
45 +
46 +
44 44  {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}
Konstruktionsaufgabe.ggb
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -36.8 KB
Inhalt
Konstruktionsaufgabe.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.kerstinhauptmann
Größe
... ... @@ -1,1 +1,0 @@
1 -81.5 KB
Inhalt