Änderungen von Dokument BPE 5.1 Ortslinien und Geometrie im Dreieck
Zuletzt geändert von Holger Engels am 2025/12/01 19:31
Von Version 84.1
bearbeitet von Holger Engels
am 2025/12/01 19:31
am 2025/12/01 19:31
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 55.2
bearbeitet von Holger Engels
am 2025/11/10 19:48
am 2025/11/10 19:48
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -7,6 +7,22 @@ 7 7 [[Kompetenzen.K1]] [[Kompetenzen.K6]] Ich kann den Satz des Thales beweisen. 8 8 [[Kompetenzen.K4]] [[Kompetenzen.K5]] Ich kann den Satz des Thales zur Prüfung auf Orthogonalität und zur Konstruktion eines rechten Winkels nutzen. 9 9 10 +{{aufgabe id="Erarbeitungsaufgabe Ortslinien" afb="III" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K1,K4, K5, K6" zeit="15" cc="by-sa"}} 11 +(%class=abc%) 12 +1. Zeichne eine Strecke {{formula}}\overline{AB}{{/formula}} mit {{formula}}\overline{AB}= 8 cm{{/formula}}. 13 +1. Bestimme den Mittelpunkt {{formula}}M{{/formula}} der Strecke {{formula}}\overline{AB}{{/formula}}. 14 +1. Zeichne die Senkrechte zur Strecke {{formula}}\overline{AB}{{/formula}} durch den Mittelpunkt {{formula}}M{{/formula}}. 15 +1. Zeichne drei weitere beliebige Geraden durch den Mittelpunkt {{formula}}M{{/formula}}. 16 +1. Zeichne einen Kreis mit dem Radius {{formula}}r=10cm{{/formula}}. 17 +1. Die Geraden schneiden den Kreis jeweils in den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}. 18 +1. Messe jeweils die Abstände von A und B zu den Schnittpunkten {{formula}}S_1{{/formula}}, {{formula}}S_2{{/formula}}, {{formula}}S_3{{/formula}} und {{formula}}S_4{{/formula}}. 19 +1. Gibt es einen Punkt {{formula}}S_i{{/formula}}, für den der Abstand zu den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}} annähernd oder sogar exakt gleich ist? 20 +1. Zeichne einen weiteren Kreis um {{formula}}A{{/formula}} mit beliebigem Radius {{formula}}r{{/formula}}. 21 +Untersuche auch hier die Abstände von den Schnittpunkten der Geraden mit dem neuen Kreis und den Punkten {{formula}}A{{/formula}} und {{formula}}B{{/formula}}. 22 +1. Erläutere, welche Eigenschaften die Schnittpunkte haben, die auf der Senkrechten zur Strecke {{formula}}\overline{AB}{{/formula}} liegen. 23 +Überlege einen passenden Namen zu dieser Geraden. 24 +{{/aufgabe}} 25 + 10 10 {{aufgabe id="Grundkonstruktion Mittelsenkrechte" afb="I" quelle="Kerstin Hauptmann, Heiko Kraiß, Dirk Tebbe" kompetenzen="K2,K4, K5, K6" zeit="15" cc="by-sa"}} 11 11 Im Koordinatensystem sind die Punkte {{formula}}A(-1|-2), B(5|3){{/formula}} und {{formula}}C(3|7){{/formula}} gegeben. 12 12 (%class=abc%) ... ... @@ -41,4 +41,8 @@ 41 41 1. Der Schnittpunkt der Geraden (Seitenhalbierenden) ist der Schwerpunkt des Dreiecks. Berechne diesen Schwerpunkt. 42 42 {{/aufgabe}} 43 43 60 +{{aufgabe id="Umfang eines Dreiecks" afb="II" quelle="Team Mathebrücke" kompetenzen=" K5" zeit="5" cc="by-sa" tags="mathebrücke"}} 61 +Berechne den Umfang des Dreiecks {{formula}}ABC{{/formula}} mit {{formula}}A(-2|3), B(10|-2), C(1|7){{/formula}}. 62 +{{/aufgabe}} 63 + 44 44 {{seitenreflexion bildungsplan="" kompetenzen="" anforderungsbereiche="" kriterien="" menge=""/}}