Zuletzt geändert von Holger Engels am 2025/12/01 19:34

Von Version 75.1
bearbeitet von Martin Rathgeb
am 2025/11/17 01:39
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 76.1
bearbeitet von Martin Rathgeb
am 2025/11/17 01:41
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -17,38 +17,15 @@
17 17  Beurteile für jede der folgenden Dreierangaben, ob damit ein Dreieck eindeutig konstruierbar, mehrdeutig konstruierbar oder nicht existent ist.
18 18  Begründe deine Entscheidung mithilfe geeigneter geometrischer Argumente, beispielsweise Kongruenzsätzen, der Winkelsumme im Dreieck, der Dreiecksungleichung oder Lageargumenten.
19 19  (% class="abc" %)
20 -a) {{formula}}\alpha = 63^\circ{{/formula}},
21 - {{formula}}b = 5{,}7\ \text{cm}{{/formula}},
22 - {{formula}}c = 12{,}8\ \text{cm}{{/formula}}
20 +1. {{formula}}\alpha = 63^\circ{{/formula}}, {{formula}}b = 5{,}7\ \text{cm}{{/formula}}, {{formula}}c = 12{,}8\ \text{cm}{{/formula}}
21 +1. {{formula}}\beta = 53^\circ{{/formula}}, {{formula}}b = 4{,}5\ \text{cm}{{/formula}}, {{formula}}c = 5{,}0\ \text{cm}{{/formula}}
22 +1. {{formula}}a = 6\ \text{cm}{{/formula}}, {{formula}}\beta = 42^\circ{{/formula}}, {{formula}}\gamma = 28^\circ{{/formula}}
23 +1. {{formula}}a = 3\ \text{cm}{{/formula}}, {{formula}}\beta = 103^\circ{{/formula}}, {{formula}}\gamma = 87^\circ{{/formula}}
24 +1. {{formula}}\alpha = 60^\circ{{/formula}}, {{formula}}\beta = 23^\circ{{/formula}}, {{formula}}\gamma = 97^\circ{{/formula}}
25 +1. {{formula}}\alpha = 50^\circ{{/formula}},{{formula}}\beta = 60^\circ{{/formula}}, {{formula}}\gamma = 55^\circ{{/formula}}
26 +1. {{formula}}a = 8\ \text{cm}{{/formula}}, {{formula}}b = 4{,}5\ \text{cm}{{/formula}}, {{formula}}c = 5{,}0\ \text{cm}{{/formula}}
27 +1. {{formula}}a = 12\ \text{cm}{{/formula}}, {{formula}}b = 6\ \text{cm}{{/formula}}, {{formula}}c = 5\ \text{cm}{{/formula}}
23 23  
24 -b) {{formula}}\beta = 53^\circ{{/formula}},
25 - {{formula}}b = 4{,}5\ \text{cm}{{/formula}},
26 - {{formula}}c = 5{,}0\ \text{cm}{{/formula}}
27 -
28 -c) {{formula}}a = 6\ \text{cm}{{/formula}},
29 - {{formula}}\beta = 42^\circ{{/formula}},
30 - {{formula}}\gamma = 28^\circ{{/formula}}
31 -
32 -d) {{formula}}a = 3\ \text{cm}{{/formula}},
33 - {{formula}}\beta = 103^\circ{{/formula}},
34 - {{formula}}\gamma = 87^\circ{{/formula}}
35 -
36 -e) {{formula}}\alpha = 60^\circ{{/formula}},
37 - {{formula}}\beta = 23^\circ{{/formula}},
38 - {{formula}}\gamma = 97^\circ{{/formula}}
39 -
40 -f) {{formula}}\alpha = 50^\circ{{/formula}},
41 - {{formula}}\beta = 60^\circ{{/formula}},
42 - {{formula}}\gamma = 55^\circ{{/formula}}
43 -
44 -g) {{formula}}a = 8\ \text{cm}{{/formula}},
45 - {{formula}}b = 4{,}5\ \text{cm}{{/formula}},
46 - {{formula}}c = 5{,}0\ \text{cm}{{/formula}}
47 -
48 -h) {{formula}}a = 12\ \text{cm}{{/formula}},
49 - {{formula}}b = 6\ \text{cm}{{/formula}},
50 - {{formula}}c = 5\ \text{cm}{{/formula}}
51 -
52 52  
53 53   1. {{formula}}\alpha = 63^\circ; \ b = 5,\! 7\text{ cm}; \ c = 12,\! 8\text{ cm}{{/formula}}
54 54  1. {{formula}}\beta = 53^\circ; \ b = 4, \! 5\text{ cm}; \ c = 5\text{ cm}{{/formula}}