Von Version 41.1
bearbeitet von akukin
am 2023/11/12 17:03
am 2023/11/12 17:03
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 35.1
bearbeitet von Holger Engels
am 2023/11/09 22:04
am 2023/11/09 22:04
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. akukin1 +XWiki.holgerengels - Inhalt
-
... ... @@ -26,7 +26,7 @@ 26 26 {{/aufgabe}} 27 27 28 28 {{aufgabe id="Annäherung" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 29 -[[image:cos und pot.png|| style="float: right" width="320"]]In {{formula}}[0;\pi/2]{{/formula}}soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt.29 +[[image:cos und pot.png|| style="float: right" width="320"]]In //[0; π/2]// soll die Funktion //f// mit {{formula}}f(x)=\cos{x}{{/formula}} durch eine Potenzfunktion //g// mit {{formula}}g(x)=1-ax^q{{/formula}} angenähert werden, wobei //q// eine positive rationale Zahl ist und //a// so gewählt wird, dass der Graph von //g// ebenfalls bei //π/2// eine Nullstelle besitzt. 30 30 31 31 (% style="list-style: alphastyle" %) 32 32 1. Bestimme //a// in Abhängigkeit von //q//. ... ... @@ -41,7 +41,7 @@ 41 41 (Bonus: Stelle //f// und die Annäherung aus c) mit Geogebra dar und berechne die durchschnittliche Abweichung von //f// und der Annäherungsfunktion.) 42 42 {{/aufgabe}} 43 43 44 -{{aufgabe id="Integralfunktion 1" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}}44 +{{aufgabe id="Integralfunktion" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 45 45 Paul, Sevda und Lucie wiederholen die Integralfunktion. Sie haben verstanden, dass jede Integralfunktion {{formula}}I_a{{/formula}} einer Funktion //f// auch Stammfunktion derselben Funktion //f// ist. In der Lerngruppe herrscht nun jedoch Uneinigkeit darüber, ob umgekehrt jede Stammfunktion auch Integralfunktion ist. 46 46 47 47 * Paul behauptet, dies sei für jede Funktion //f// der Fall. ... ... @@ -51,7 +51,7 @@ 51 51 Begründe zunächst, weshalb jede Integralfunktion von //f// auch Stammfunktion von //f// ist. Überprüfe dann, wer Recht hat. 52 52 {{/aufgabe}} 53 53 54 -{{aufgabe id="Integralfunktion 2" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}}54 +{{aufgabe id="Integralfunktion" afb="III" Kompetenzen="" tags="problemlösen" quelle="Dr. Andreas Dinh" cc="BY-SA"}} 55 55 //f// bezeichnet im Folgenden eine im ganzen Definitionsbereich **D** knickfreie Funktion. 56 56 57 57 Streng steigende Monotonie ist für //f// wie folgt definiert: ... ... @@ -153,7 +153,7 @@ 153 153 {{/aufgabe}} 154 154 155 155 {{aufgabe id="Gitter" afb="III" Kompetenzen="" tags="problemlösen" quelle="Stefan Rosner" cc="BY-SA"}} 156 - [[image:Gitter 7x7.svg||style="float: right" width="200"]]Wie viele Möglichkeiten gibt es, bei einem beliebigen mxm-Gitter (//m// ist eine natürliche Zahl) entlang der Gitterlinien auf kürzestem Wege von einer Ecke zur diagonal gegenüberliegenden Ecke zu gelangen?156 +Wie viele Möglichkeiten gibt es, bei einem beliebigen mxm-Gitter (//m// ist eine natürliche Zahl) entlang der Gitterlinien auf kürzestem Wege von einer Ecke zur diagonal gegenüberliegenden Ecke zu gelangen? 157 157 158 158 Zur Problemlösung legen Ihnen 3 Mitschüler*innen Lösungsansätze vor. Begründe, welcher Ansatz stimmt 159 159 und weshalb die beide anderen Ansätze falsch sind.
- Gitter 7x7.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.holgerengels - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -3.3 KB - Inhalt
-
... ... @@ -1,1 +1,0 @@ 1 -<svg version="1.1" viewBox="0.0 0.0 385.51181102362204 385.51181102362204" fill="none" stroke="none" stroke-linecap="square" stroke-miterlimit="10" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><clipPath id="p.0"><path d="m0 0l385.5118 0l0 385.5118l-385.5118 0l0 -385.5118z" clip-rule="nonzero"/></clipPath><g clip-path="url(#p.0)"><path fill="#000000" fill-opacity="0.0" d="m0 0l385.5118 0l0 385.5118l-385.5118 0z" fill-rule="evenodd"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m3.7795277 2.28084l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m57.771652 2.28084l0 58.826775" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m57.771652 61.107613l0 321.6273" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m111.76378 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m165.7559 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m219.74803 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m273.74014 2.7795277l0 379.95535" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m327.73227 2.7795277l0 323.769" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m327.73227 326.54855l0 56.685028" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m381.7244 2.7795277l0 380.45404" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m2.7795277 3.7795277l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m59.27034 3.7795277l323.45404 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 59.608925l53.49344 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m56.272964 59.608925l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m112.76378 59.608925l269.96063 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 113.296585l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 166.98425l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 220.67192l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 274.3596l379.94485 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 328.04724l269.9606 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m272.74014 328.04724l56.490814 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m329.23096 328.04724l53.49344 0" fill-rule="nonzero"/><path stroke="#9e9e9e" stroke-width="2.0" stroke-linecap="butt" d="m2.7795277 381.7349l323.45404 0" fill-rule="nonzero"/><path stroke="#000000" stroke-width="3.0" stroke-linecap="butt" d="m326.23358 381.7349l56.490814 0" fill-rule="nonzero"/></g></svg>