Änderungen von Dokument Lösung Lineare Algebra
Zuletzt geändert von akukin am 2025/01/31 23:45
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 0 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -5,6 +5,50 @@ 5 5 {{formula}}g\cap h{{/formula}} ergibt Schnittpunkt {{formula}}T(-1|5|-2){{/formula}}, d.h. {{formula}}g{{/formula}} und {{formula}}h{{/formula}} liegen in einer Ebene. 6 6 {{/detail}} 7 7 8 + 9 +{{detail summary="Erläuterung der Lösung"}} 10 +//Aufgabenstellung// 11 +<br><p> 12 +Zeige, dass die Geraden {{formula}}g{{/formula}} und {{formula}}h{{/formula}} in einer gemeinsamen Ebene {{formula}}E{{/formula}} liegen. 13 +</p> 14 +//Lösung// 15 +<br> 16 +Die Gleichung der Gerade {{formula}}g{{/formula}} hat den Stützpunkt {{formula}}A{{/formula}} und den Richtungsvektor {{formula}}\overrightarrow{AC}{{/formula}}. 17 +<br> 18 +{{formula}}g: \vec{x}=\overrightarrow{OA}+s\cdot \overrightarrow{AC}; \quad s \in \mathbb{R}{{/formula}} 19 +<br> 20 +{{formula}}g:\vec{x}= \left(\begin{matrix}0\\3\\0\end{matrix}\right)+s\cdot \left(\begin{matrix}1\\-2\\2\end{matrix}\right); \ s\in \mathbb{R}{{/formula}} 21 +<br> 22 +Zwei Geraden liegen in einer gemeinsamen Ebene, wenn Sie sich schneiden. 23 +<br> 24 +{{formula}}g \cap h:\left(\begin{matrix}0\\3\\0\end{matrix}\right)+s\cdot \left(\begin{matrix}1\\-2\\2\end{matrix}\right)= \left(\begin{matrix}5\\-3\\2\end{matrix}\right)+r\cdot \left(\begin{matrix}3\\-4\\2\end{matrix}\right) {{/formula}} 25 +<br> 26 +Dazugehöriges lineares Gleichungssystem für {{formula}}r{{/formula}} und {{formula}}s{{/formula}}: 27 + 28 +{{formula}} 29 +\left\{ 30 +\begin{aligned} 31 +0 + 1s &= 5 + 3r \\ 32 +3 - 2s &= -3 - 4r \\ 33 +0 + 2s &= 2 + 2r 34 +\end{aligned} 35 +\right\} 36 +\Leftrightarrow 37 +\left\{ 38 +\begin{aligned} 39 +s - 3r &= 5 \\ 40 +-2s + 4r &= -6 \\ 41 +2s - 2r &= 2 42 +\end{aligned} 43 +\right\} 44 +\Leftrightarrow 45 +r = -2 \land s = -1 46 +{{/formula}} 47 + 48 +Da das LGS eine Lösung hat, liegen {{formula}}g{{/formula}} und {{formula}}h{{/formula}} in einer Ebene. 49 + 50 +{{/detail}} 51 + 8 8 === Teilaufgabe b) === 9 9 {{detail summary="Erwartungshorizont (offiziell)"}} 10 10 Normalenvektor: {{formula}}\left(\begin{matrix}1\\-2\\2\end{matrix}\right) \times \left(\begin{matrix}3\\-4\\2\end{matrix}\right)= \left(\begin{matrix}4\\4\\2\end{matrix}\right){{/formula}} ... ... @@ -12,6 +12,37 @@ 12 12 Damit nach Punktprobe z. B. mit {{formula}}A{{/formula}}: {{formula}}E: 2x_1+2x_2+x_3=6{{/formula}} 13 13 {{/detail}} 14 14 59 + 60 +{{detail summary="Erläuterung der Lösung"}} 61 +//Aufgabenstellung// 62 +<br><p> 63 +Bestimme eine Koordinatengleichung der in Teilaufgabe a) beschriebenen Ebene {{formula}}E{{/formula}}. 64 +<br> 65 + //(Zur Kontrolle {{formula}}E: 2x_1+2x_2+x_3=6){{/formula}}// 66 +</p> 67 +//Lösung// 68 +<br> 69 +Die beiden Richtungsvektoren der Geraden {{formula}}g{{/formula}} und {{formula}}h{{/formula}} sind die Spannvektoren der Ebene {{formula}}E{{/formula}}. 70 +<br> 71 +Der Normalenvektor der Ebene ist das Vektorprodukt aus den beiden Spannvektoren der Ebene. 72 +<br> 73 +Normalenvektor: {{formula}}\left(\begin{matrix}1\\-2\\2\end{matrix}\right) \times \left(\begin{matrix}3\\-4\\2\end{matrix}\right)= \left(\begin{matrix}4\\4\\2\end{matrix}\right){{/formula}} 74 +<br><p> 75 +Allgemein lautet die Koordinatenform einer Ebene {{formula}}n_1 x_1+n_2 x_2+n_3 x_3=b{{/formula}}, wobei {{formula}}\vec{n} =\left(\begin{matrix} n_1\\n_2\\n_3\end{matrix}\right){{/formula}} ein Normalenvektor der Ebene ist. 76 +</p> 77 +{{formula}}E: 4x_1+4x_2+2x_3=b{{/formula}} 78 +<br> 79 +Den noch fehlenden Wert für {{formula}}b{{/formula}} auf der rechten Seite der Koordinatenform erhält man am schnellsten, indem man eine Punktprobe durchführt, z. B. mit dem Punkt {{formula}}A{{/formula}}. 80 +<br> 81 +{{formula}}A(0|3|0): \ E:4\cdot 0+4\cdot 3+2\cdot 0=b \Leftrightarrow b=12{{/formula}} 82 +<br> 83 +{{formula}}E: 4x_1+4x_2+2x_3=12{{/formula}} 84 +<br> 85 +Diese Gleichung kann noch durch 2 dividiert werden. 86 +<br> 87 +{{formula}}E: 2x_1+2x_2+x_3=6{{/formula}} 88 +{{/detail}} 89 + 15 15 === Teilaufgabe c) === 16 16 {{detail summary="Erwartungshorizont (offiziell)"}} 17 17 Spurpunkt {{formula}}S_1: x_2=x_3=0; \ S_1 (3|0|0){{/formula}} ... ... @@ -20,6 +20,30 @@ 20 20 [[image:LösungB3.2.png||width="250" style="display:block;margin-left:auto;margin-right:auto"]] 21 21 {{/detail}} 22 22 98 + 99 +{{detail summary="Erläuterung der Lösung"}} 100 +//Aufgabenstellung// 101 +<br><p> 102 +Berechne die Koordinaten der Spurpunkte von {{formula}}E{{/formula}}. 103 +<br> 104 +Stelle die Ebene {{formula}}E{{/formula}} mit Hilfe der Spurpunkte in einem räumlichen Koordinatensystem dar. 105 +</p> 106 +//Lösung// 107 +<br> 108 +Die Spurpunkte einer Ebene sind die Durchstoßpunkte der Koordinatenachsen mit dieser Ebene, also diejenigen Punkte auf der Ebene, die gleichzeitig auch auf einer der Achsen liegen. 109 +Zwei der drei Koordinaten eines Spurpunkts sind immer Null. Setzt man zwei Koordinaten in der Ebenengleichung auf Null, kann man die dritte Koordinate ermitteln. 110 +<br> 111 +Spurpunkte: 112 +<br> 113 +{{formula}}S_1: x_2=x_3=0 \ \rightarrow \ x_1=3; \ S_1(3|0|0){{/formula}} 114 +<br> 115 +{{formula}}S_2: x_1=x_3=0 \ \rightarrow \ x_2=3; \ S_2 (0|3|0){{/formula}} 116 +<br> 117 +{{formula}}S_3: x_1=x_2=0 \ \rightarrow \ x_3=6; \ S_3 (0|0|6){{/formula}} 118 +Zeichnet man die drei Spurpunkte in ein Koordinatensystem und verbindet sie, so repräsentiert das sich ergebende Dreieck die Ebene. 119 +[[image:LösungB3.2.png||width="250" style="display:block;margin-left:auto;margin-right:auto"]] 120 +{{/detail}} 121 + 23 23 === Teilaufgabe d) === 24 24 {{detail summary="Erwartungshorizont (offiziell)"}} 25 25 Der weitere Eckpunkt sei {{formula}}B{{/formula}}, dieser liegt in {{formula}}E: 2\cdot (-1)+2\cdot 2+4=6{{/formula}} ... ... @@ -31,6 +31,37 @@ 31 31 Mit {{formula}}\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{BC}{{/formula}} ist {{formula}}D(3|0|0){{/formula}}. 32 32 {{/detail}} 33 33 133 + 134 +{{detail summary="Erläuterung der Lösung"}} 135 +//Aufgabenstellung// 136 +<br><p> 137 +Zeige, dass ein weiterer Eckpunkt des Quadrats die Koordinaten {{formula}}(-1|2|4){{/formula}} hat. 138 +<br> 139 +Berechne die Koordinaten des vierten Eckpunktes {{formula}}D{{/formula}}. 140 +</p> 141 +//Lösung// 142 +<br> 143 +Wir zeigen zuerst, dass der weitere Eckpunkt {{formula}}(-1|2|4){{/formula}} in der Ebene {{formula}}E{{/formula}} liegt. 144 +<br> 145 +{{formula}}E: 2\cdot(-1)+2\cdot 2+4=6 \quad (w){{/formula}} 146 +<br><p> 147 +Da die Punktprobe eine wahre Aussage ergibt, liegt der Punkt in der Ebene. 148 +</p> 149 +Der weitere Eckpunkt sei {{formula}}B(-1|2|4){{/formula}}. Zum einen muss gelten, dass die Seiten {{formula}}AB{{/formula}} und {{formula}}BC{{/formula}} des Quadrats senkrecht aufeinander stehen, also dass dass Skalarprodukt {{formula}}\overrightarrow{AB} \cdot \overrightarrow{BC}=0{{/formula}} ergibt; zum anderen müssen die beiden Seiten gleich lang sein, also muss |(AB) ⃗ |=|(BC) ⃗ | gelten. 150 +<br> 151 +{{formula}}\overrightarrow{AB}\cdot \overrightarrow{BC}= \left(\begin{matrix}-1\\-1\\4\end{matrix}\right)\cdot \left(\begin{matrix}3\\-3\\0\end{matrix}\right)=0{{/formula}} 152 +<br> 153 +{{formula}}|\overrightarrow{AB}|=\sqrt{(-1)^2+(-1)^2+4^2}=\sqrt{18} ; \ |\overrightarrow{BC}|=\sqrt{3^2+(-3)^2+0^2}=\sqrt{18}{{/formula}} 154 +<br><p> 155 +Damit sind {{formula}}AB{{/formula}} und {{formula}}BC{{/formula}} sowohl orthogonal als auch gleich lang, also sind sie Seiten eines in {{formula}}E{{/formula}} liegenden Quadrats. 156 +</p> 157 +Der fehlende Punkt {{formula}}D{{/formula}} kann ermittelt werden, indem zum Ortsvektor einer Ecke des Quadrats der Verbindungsvektor der gegenüberliegenden Seite addiert wird (was anhand einer Skizze veranschaulicht werden kann). 158 +<br> 159 +{{formula}}\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{BC}=\left(\begin{matrix}0\\3\\0\end{matrix}\right) +\left(\begin{matrix}3\\-3\\0\end{matrix}\right) =\left(\begin{matrix}3\\0\\0\end{matrix}\right) {{/formula}} 160 +<br> 161 +Der fehlende Eckpunkt des Quadrats ist also {{formula}}D(3|0|0){{/formula}}. 162 +{{/detail}} 163 + 34 34 === Teilaufgabe e) === 35 35 {{detail summary="Erwartungshorizont (offiziell)"}} 36 36 Mittelpunkt der Grundfläche: {{formula}}\overrightarrow{OM}= \frac{1}{2}\cdot (\overrightarrow{OA}+\overrightarrow{OC})=\left(\begin{matrix}1\\1\\2\end{matrix}\right){{/formula}}; also {{formula}}M(1|1|2){{/formula}} ... ... @@ -40,6 +40,33 @@ 40 40 Damit gilt für die Spitze {{formula}}S{{/formula}} der Pyramide {{formula}}\overrightarrow{OS}=\overrightarrow{OM} \pm 4\cdot \vec{n}{{/formula}}, also {{formula}}S(9|9|6){{/formula}} oder {{formula}}S(-7|-7|-2){{/formula}}. 41 41 {{/detail}} 42 42 173 + 174 +{{detail summary="Erläuterung der Lösung"}} 175 +//Aufgabenstellung// 176 +<br><p> 177 +Bestimme die Koordinaten einer möglichen Spitze der Pyramide, sodass diese die Höhe 12 hat. 178 +</p> 179 +//Lösung// 180 +<br> 181 +Zuerst wird der Mittelpunkt {{formula}}M{{/formula}} der Grundfläche, also des Quadrats benötigt; er ist zugleich Mittelpunkt der Diagonalen {{formula}}AC{{/formula}}. (Die Formel für die Berechnung des Mittelpunkts einer Strecke findet sich in der Merkhilfe.) 182 +<br> 183 +Mittelpunkt der Grundfläche: {{formula}}\overrightarrow{OM}= \frac{1}{2}\cdot (\overrightarrow{OA}+\overrightarrow{OC})=\left(\begin{matrix}1\\1\\2\end{matrix}\right);{{/formula}} also {{formula}}M(1|1|2){{/formula}} 184 +<br> 185 +Die Spitze der Pyramide ist vom Mittelpunkt {{formula}}M{{/formula}} 12 Längeneinheiten in Richtung des Normalenvektors entfernt. 186 +<br> 187 +Der Normalenvektor der Ebene ist gegeben durch die Koeffizienten der Koordinatenform der Ebenengleichung. 188 +<br> 189 +Normalenvektor von {{formula}}E: \vec{n}=\left(\begin{matrix}2\\2\\1\end{matrix}\right){{/formula}} 190 +<br> 191 +Addiert (oder subtrahiert) man zum Ortsvektor von {{formula}}M{{/formula}} zwölfmal den Einheitsvektor von {{formula}}\vec{n}{{/formula}}, so erhält man den Ortsvekor der Spitze. 192 +<br> 193 +Der Einheitsvektor eines Vektors ist der Vektor dividiert durch seinen Betrag. 194 +<br> 195 +{{formula}}|\vec{n}|=3; \ \vec{n}=\frac{1}{3}\cdot \left(\begin{matrix}2\\2\\1\end{matrix}\right){{/formula}} 196 +<br> 197 +Damit gilt für die Spitze {{formula}}S{{/formula}} der Pyramide {{formula}}\overrightarrow{OS}=\overrightarrow{OM}\pm 12\cdot \frac{1}{3}\cdot \vec{n}{{/formula}}, also {{formula}}S(9|9|6){{/formula}} oder {{formula}}S(-7|-7|-2){{/formula}}. 198 +{{/detail}} 199 + 43 43 === Teilaufgabe f) === 44 44 {{detail summary="Erwartungshorizont (offiziell)"}} 45 45 Die {{formula}}x_3{{/formula}}-Koordinate von {{formula}}R^\prime{{/formula}} ist negativ, während alle {{formula}}x_3{{/formula}}-Koordinaten der Punkte {{formula}}A,B,C,D{{/formula}} größer oder gleich 0 sind. Deshalb muss {{formula}}R{{/formula}} außerhalb der Grundfläche {{formula}}ABCD{{/formula}} liegen. ... ... @@ -48,3 +48,28 @@ 48 48 <br> 49 49 {{formula}}g_{MR}\cap g_{R^\prime R}{{/formula}} ergibt den Schnittpunkt {{formula}}R(3|3|3){{/formula}}. 50 50 {{/detail}} 208 + 209 + 210 +{{detail summary="Erläuterung der Lösung"}} 211 +//Aufgabenstellung// 212 +<br><p> 213 +Begründe, dass der Schattenpunkt {{formula}}R^\prime{{/formula}} außerhalb der Grundfläche der Pyramide liegt. 214 +<br> 215 +Berechne die Koordinaten der Spitze {{formula}}R{{/formula}}. 216 +</p> 217 +//Lösung// 218 +<br><p> 219 +Die {{formula}}x_3{{/formula}}-Koordinate von {{formula}}R^\prime{{/formula}} ist negativ, während alle {{formula}}x_3{{/formula}}-Koordinaten der Punkte {{formula}}A,B,C,D{{/formula}} größer oder gleich 0 sind. Deshalb muss {{formula}}R{{/formula}} außerhalb der Grundfläche {{formula}}ABCD{{/formula}} liegen. 220 +</p> 221 +Da die weitere Pyramide ebenfalls gerade ist, liegt die Spitze {{formula}}R{{/formula}} auch auf der Geraden durch {{formula}}M{{/formula}} und {{formula}}S{{/formula}}. 222 +<br> 223 +Die Spitze {{formula}}R{{/formula}} muss zudem auf einer Geraden liegen, die {{formula}}R^\prime{{/formula}} als Stützpunkt hat und parallel zur {{formula}}x_3{{/formula}}-Achse verläuft (denn aus dieser Richtung wird die Pyramide beleuchtet). 224 +<br> 225 +Die beiden Geraden, auf der {{formula}}R{{/formula}} liegen muss, haben die Gleichungen: 226 +<br> 227 +{{formula}}g_{MR}: \vec{x}=\left(\begin{matrix}1\\1\\2\end{matrix}\right)+r\cdot \left(\begin{matrix}2\\2\\1\end{matrix}\right); \ r\in \mathbb{R} \quad g_{R^\prime R}: \vec{x}=\left(\begin{matrix}3\\3\\-6\end{matrix}\right)+s\cdot \left(\begin{matrix}0\\0\\1\end{matrix}\right); \ s \in \mathbb{R}{{/formula}} 228 +<br> 229 +{{formula}}g_{MR}\cap g_{R^\prime R}{{/formula}} ergibt den Schnittpunkt {{formula}}R(3|3|3){{/formula}}. 230 + 231 +{{/detail}} 232 +
- LösungB3.2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.akukin - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Inhalt