Änderungen von Dokument BPE 1 Einheitsübergreifend
Zuletzt geändert von Holger Engels am 2025/01/12 21:23
Von Version 29.1
bearbeitet von Niklas Wunder
am 2024/10/15 13:46
am 2024/10/15 13:46
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 17.1
bearbeitet von Holger Engels
am 2023/11/28 09:55
am 2023/11/28 09:55
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (2 geändert, 0 hinzugefügt, 0 gelöscht)
-
Anhänge (0 geändert, 2 hinzugefügt, 1 gelöscht)
Details
- Seiteneigenschaften
-
- Dokument-Autor
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. niklaswunder1 +XWiki.holgerengels - Inhalt
-
... ... @@ -1,18 +1,4 @@ 1 -{{aufgabe id="" afb="III" zeit="20" kompetenzen="K2, K5" tags="" quelle="Torben Würth" cc="BY-SA"}} 2 -Gegeben ist die Funktion {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}} 3 - 1. Gib den Funktionsterm in vereinfachter Schreiweise an. 4 - 1. Gib den Funktionsterm als Wurzelfunktion an. 5 - 1. Bestimme die maximale Definitionsmenge sowie den Wertebereich. 6 - 1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. 7 - 8 - ((((% class="border" style="width:100%" %) 9 -|={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | | 10 -|={{formula}}f(x){{/formula}}|||||||||||||||||| 11 -))) 12 - [[image:Achsenkreuz.svg||width="600px"]] 13 -{{/aufgabe}} 14 - 15 -{{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 1 +{{aufgabe id="Gitterpunkte" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 16 16 Legt man **rechtwinklige Dreiecke** so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. 17 17 18 18 Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. ... ... @@ -21,8 +21,6 @@ 21 21 22 22 Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg). 23 23 24 -Hinweis: 15.10.2024 Ich gehe davon aus, das hier ein Fehler in der Aufgabenstellung ist. Es ist wichtig zu sagen, dass a und b natürliche Zahlen sind, da sonst auch gedrehte Dreiecke mit den drei Eckpunkten auf Gitterpunkten möglich wären. Desweiteren spricht Schüler 2 von Seitenlängen a und a. Das sollte Längen a und b heißen. 25 - 26 26 {{lehrende}} 27 27 **Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe: 28 28 Finde für solche Dreiecke allgemeine Formeln, mit denen sich ... ... @@ -36,27 +36,30 @@ 36 36 {{/lehrende}} 37 37 {{/aufgabe}} 38 38 39 -{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="III" zeit="20" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 23 +{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} 24 + 40 40 Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt. 41 41 27 +{{lehrende}} 28 +**__Variante 1:__ Offene Aufgabe für den Unterricht & für die Klassenarbeit** 29 +Wie viele Diagonalen hat ein n-Eck? 30 + 31 +**__Variante 2:__ Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung** 42 42 Ella und Jan haben ausgehend von einem 9-Eck zwei verschiedene Wege gefunden, um die Anzahl der Diagonalen zu berechnen: 43 43 44 44 Ella: {{formula}} 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27{{/formula}} 45 45 Jan: {{formula}} \frac{9 \cdot 6}{2}{{/formula}} 46 - 36 + 47 47 Wie sind Ella und Jan auf ihre Formeln gekommen? Analysiere und vergleiche die beiden Lösungsbeispiele. 48 - 38 + 49 49 Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck. 50 - 51 -{{lehrende}} 52 -**Variante 1:** Offene Aufgabe für den Unterricht & für die Klassenarbeit 53 -Wie viele Diagonalen hat ein n-Eck? 54 54 {{/lehrende}} 55 55 {{/aufgabe}} 56 56 57 -{{aufgabe id="Fussball" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 43 +{{aufgabe id="Fussball" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} 44 +[[image:Fussball.PNG||width="550"]] (Bildquellen:Postbank) 58 58 59 -Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach? 46 +[[image:Fußballspielfläche.PNG||width="250" style="float: left; margin-right: 24px"]]Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach? 60 60 61 61 Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt. 62 62 ... ... @@ -63,6 +63,3 @@ 63 63 1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. 64 64 1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. 65 65 {{/aufgabe}} 66 - 67 -{{seitenreflexion/}} 68 -
- Achsenkreuz.svg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.torbenwuerth - Größe
-
... ... @@ -1,1 +1,0 @@ 1 -5.9 KB - Inhalt
-
... ... @@ -1,1 +1,0 @@ 1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="914" height="737"><defs><clipPath id="pwyNrvvZqofS"><path fill="none" stroke="none" d=" M 0 0 L 914 0 L 914 737 L 0 737 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#pwyNrvvZqofS)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="914" height="737" fill-opacity="1"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 2.5 L 482.5 737.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 478.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 486.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 375.5 L 912.5 375.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 371.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 379.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 32.5 375.5 L 32.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 82.5 375.5 L 82.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 132.5 375.5 L 132.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 182.5 375.5 L 182.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 232.5 375.5 L 232.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 282.5 375.5 L 282.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 332.5 375.5 L 332.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 382.5 375.5 L 382.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 432.5 375.5 L 432.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 532.5 375.5 L 532.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 582.5 375.5 L 582.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 632.5 375.5 L 632.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 682.5 375.5 L 682.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 732.5 375.5 L 732.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 782.5 375.5 L 782.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 832.5 375.5 L 832.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 882.5 375.5 L 882.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 725.5 L 482.5 725.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 675.5 L 482.5 675.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 625.5 L 482.5 625.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 575.5 L 482.5 575.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 525.5 L 482.5 525.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 475.5 L 482.5 475.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 425.5 L 482.5 425.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 325.5 L 482.5 325.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 275.5 L 482.5 275.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 225.5 L 482.5 225.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 175.5 L 482.5 175.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 125.5 L 482.5 125.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 75.5 L 482.5 75.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 25.5 L 482.5 25.5" stroke-opacity="1" stroke-miterlimit="10"/></g></g></svg>
- Fussball.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.akukin - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +1.2 MB - Inhalt
- Fußballspielfläche.PNG
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.martinrathgeb - Größe
-
... ... @@ -1,0 +1,1 @@ 1 +119.3 KB - Inhalt