Änderungen von Dokument BPE 1 Einheitsübergreifend

Zuletzt geändert von Holger Engels am 2025/01/12 21:23

Von Version 40.1
bearbeitet von Holger Engels
am 2024/12/18 14:35
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 11.1
bearbeitet von akukin
am 2023/11/27 22:40
Änderungskommentar: Neues Bild Fußballspielfläche.PNG hochladen

Zusammenfassung

Details

Seiteneigenschaften
Titel
... ... @@ -1,1 +1,1 @@
1 -BPE 1 Einheitsübergreifend
1 +BPE_1
Dokument-Autor
... ... @@ -1,1 +1,1 @@
1 -XWiki.holgerengels
1 +XWiki.akukin
Inhalt
... ... @@ -1,82 +1,58 @@
1 -{{aufgabe id="Klassenparty" afb="II" zeit="10" kompetenzen="K1,K3,K4,K5" quelle="Torben Würth" cc="BY-SA"}}
2 -Für eine Klassenparty stehen zwei Locations zur Verfügung. In der Almhütte muss für die Raummiete eine Gebühr von 20€ bezahlt werden, jedes Getränk kostet 2€. Im Hüttenzauber sind lediglich 2,5€ pro Getränk zu zahlen, eine Raummiete fällt nicht an.
3 -Begründe, für welche Location Du dich entscheiden würdest.
4 -{{/aufgabe}}
1 +{{aufgabe id="Gitterpunkte" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}}
2 +Legt man **rechtwinklige Dreiecke** so auf ein Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**.
5 5  
6 -{{aufgabe id="Parabel und Gerade" afb="II" zeit="30" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA"}}
7 -Gegeben ist die Funktionsgleichung {{formula}}f(x)=(x+2)^2-3{{/formula}} und ein zu ergänzendes Koordinatensystem.
8 -(% style="list-style: alphastyle" %)
9 -1. Zeichne den Funktionsgraphen in einem geeigneten Intervall.
10 -1. Berechne die Funktionswerte an den Stellen {{formula}}x=-3{{/formula}} und {{formula}}x=1{{/formula}}.
11 -1. Zeichne die Gerade {{formula}}g{{/formula}} durch die Punkte {{formula}}P_1(-3|-2){{/formula}} und {{formula}}P_2(1|6){{/formula}} ein.
12 -1. Berechne den Funktionsterm der Geraden {{formula}}g{{/formula}}.
13 -1. Ermittle den Bereich, in dem die Gerade über der {{formula}}x{{/formula}}-Achse verläuft.
14 -1. Bestimme den Funktionsterm einer Geraden {{formula}}h{{/formula}}, die senkrecht auf der Geraden {{formula}}g{{/formula}} steht und einen gemeinsamen Punkt mit {{formula}}f{{/formula}} und {{formula}}g{{/formula}} hat.
15 -{{/aufgabe}}
16 -
17 -{{aufgabe id="Wurzelfunktion" afb="II" zeit="20" kompetenzen="K4,K5" tags="" quelle="Torben Würth" cc="BY-SA"}}
18 -Gegeben ist die Funktionsgleichung {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}}, eine zu ergänzende Wertetabelle und ein zu ergänzendes Koordinatensystem.
19 -
20 -((((% class="border" style="width:100%" %)
21 -|={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | |
22 -|={{formula}}f(x){{/formula}}||||||||||||||||||
23 -)))
24 -(% style="list-style: alphastyle" %)
25 -1. Gib den Funktionsterm in vereinfachter Schreibweise an.
26 -1. Gib den Funktionsterm als Wurzelfunktion an.
27 -1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall.
28 -1. Bestimme den maximalen Definitionsbereich sowie den Wertebereich.
29 -{{/aufgabe}}
30 -
31 -{{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}}
32 -Legt man **rechtwinklige Dreiecke** mit den einer waagerechten Katheten {{formula}} a {{/formula}} und senkrechten Katheten {{formula}}b{{/formula}} so auf ein quadratisches Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**.
33 -
34 -Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
35 -
36 -Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} b {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
37 -
38 -Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg).
39 -
40 40  {{lehrende}}
41 -**Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:
42 -Finde für solche Dreiecke allgemeine Formeln, mit denen sich
43 -* die Anzahl der Gitterpunkte auf dem **Rand**
44 -* die Anzahl der Gitterpunkte im **Inneren des Dreiecks in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt.
5 +**__Variante 1:__ Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe:**
6 +Finden Sie für solche Dreiecke allgemeine Formeln, mit denen sich
7 +*die Anzahl der Gitterpunkte auf dem **Rand**
8 +*die Anzahl der Gitterpunkte im **Inneren des Dreiecks**
9 +**in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt.
45 45  //Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).//
46 46  
47 -**Variante 2:** Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen
12 +
13 +**__Variante 2:__ Kleinere Klassenarbeitsaufgabe, Richtige Lösung finden**
14 +Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
15 +
16 +Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} a {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
17 +Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg).
18 +(% style="color:black" %)
19 +**__Variante 3:__ Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen**
48 48  Jemand behauptet: Ein solches rechtwinkliges Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} besitzt {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks.
49 49  Zeige, dass diese Behauptung richtig ist.
50 50  {{/lehrende}}
51 51  {{/aufgabe}}
52 52  
53 -{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="III" zeit="20" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}}
25 +{{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}}
26 +
54 54  Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt.
55 55  
29 +{{lehrende}}
30 +**__Variante 1:__ Offene Aufgabe für den Unterricht & für die Klassenarbeit**
31 +Wie viele Diagonalen hat ein n-Eck?
32 +
33 +**__Variante 2:__ Kleinere Klassenarbeitsvariante, Vergleich von Strategien, Verallgemeinerung**
56 56  Ella und Jan haben ausgehend von einem 9-Eck zwei verschiedene Wege gefunden, um die Anzahl der Diagonalen zu berechnen:
57 57  
58 58  Ella: {{formula}} 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27{{/formula}}
59 59  Jan: {{formula}} \frac{9 \cdot 6}{2}{{/formula}}
60 -
38 +
61 61  Wie sind Ella und Jan auf ihre Formeln gekommen? Analysiere und vergleiche die beiden Lösungsbeispiele.
62 -
40 +
63 63  Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck.
64 -
65 -{{lehrende}}
66 -**Variante 1:** Offene Aufgabe für den Unterricht & für die Klassenarbeit
67 -Wie viele Diagonalen hat ein n-Eck?
68 68  {{/lehrende}}
43 +
44 +{{aufgabe id="Fussball" afb="" zeit="" Kompetenzen="" tags="problemlösen" quelle="Problemlösegruppe" cc=""}}
45 +Inmitten von wie vielen Fußbällen sitzen
46 +Franz Beckenbauer und Oliver Bierhoff
47 +hier im Borussia-Park von Mönchengladbach?
48 +
49 +Die Spielfläche wurde vor der WM 2006 zu
50 +PR-Zwecken von 320 Mitarbeitern einer
51 +großen deutschen Bank komplett mit
52 +Fußbällen belegt.
53 +
54 +a) Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle.
55 +
56 +b) Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte.
57 +Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind.
69 69  {{/aufgabe}}
70 -
71 -{{aufgabe id="Fussball" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc=""}}
72 -
73 -Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach?
74 -
75 -Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt.
76 -
77 -1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle.
78 -1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind.
79 -{{/aufgabe}}
80 -
81 -{{matrix/}}
82 -
Achsenkreuz.svg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.torbenwuerth
Größe
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Inhalt
... ... @@ -1,1 +1,0 @@
1 -<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="914" height="737"><defs><clipPath id="pwyNrvvZqofS"><path fill="none" stroke="none" d=" M 0 0 L 914 0 L 914 737 L 0 737 L 0 0 Z"/></clipPath></defs><g transform="scale(1,1)" clip-path="url(#pwyNrvvZqofS)"><g><rect fill="rgb(255,255,255)" stroke="none" x="0" y="0" width="914" height="737" fill-opacity="1"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 2.5 L 482.5 737.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 478.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 482.5 1.5 L 486.5 5.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 0.5 375.5 L 912.5 375.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 371.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 913.5 375.5 L 909.5 379.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 32.5 375.5 L 32.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 82.5 375.5 L 82.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 132.5 375.5 L 132.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 182.5 375.5 L 182.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 232.5 375.5 L 232.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 282.5 375.5 L 282.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 332.5 375.5 L 332.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 382.5 375.5 L 382.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 432.5 375.5 L 432.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 532.5 375.5 L 532.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 582.5 375.5 L 582.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 632.5 375.5 L 632.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 682.5 375.5 L 682.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 732.5 375.5 L 732.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 782.5 375.5 L 782.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 832.5 375.5 L 832.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 882.5 375.5 L 882.5 378.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 725.5 L 482.5 725.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 675.5 L 482.5 675.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 625.5 L 482.5 625.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 575.5 L 482.5 575.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 525.5 L 482.5 525.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 475.5 L 482.5 475.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 425.5 L 482.5 425.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 325.5 L 482.5 325.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 275.5 L 482.5 275.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 225.5 L 482.5 225.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 175.5 L 482.5 175.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 125.5 L 482.5 125.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 75.5 L 482.5 75.5" stroke-opacity="1" stroke-miterlimit="10"/><path fill="none" stroke="rgb(37,37,37)" paint-order="fill stroke markers" d=" M 479.5 25.5 L 482.5 25.5" stroke-opacity="1" stroke-miterlimit="10"/></g></g></svg>
Fussball.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.akukin
Größe
... ... @@ -1,0 +1,1 @@
1 +1.2 MB
Inhalt
Fußballspielfläche.PNG
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.martinrathgeb
Größe
... ... @@ -1,0 +1,1 @@
1 +119.3 KB
Inhalt