Wiki-Quellcode von BPE 1 Einheitsübergreifend
Version 32.3 von Holger Engels am 2024/10/15 21:12
Verstecke letzte Bearbeiter
author | version | line-number | content |
---|---|---|---|
![]() |
32.3 | 1 | {{aufgabe id="Klassenparty" afb="II" zeit="10" kompetenzen="K1,K3,K4,K5" quelle="Torben Würth" cc="BY-SA"}} |
![]() |
32.1 | 2 | Für eine Klassenparty stehen zwei Locations zur Verfügung. In der Almhütte muss für die Raummiete eine Gebühr von 200€ bezahlt werden, jedes Getränk kostet 2€. Im Hüttenzauber sind lediglich 2,5€ pro Getränk zu zahlen, eine Raummiete fällt nicht an. |
![]() |
31.2 | 3 | Begründe, für welche Location Du dich entscheiden würdest. |
4 | {{/aufgabe}} | ||
5 | |||
![]() |
32.3 | 6 | {{aufgabe id="Parabel und Gerade" afb="II" zeit="15" kompetenzen="K4,K5" quelle="Torben Würth" cc="BY-SA"}} |
![]() |
31.2 | 7 | Gegeben ist die Funktion {{formula}}f(x)=(x+2)^2-3{{/formula}} |
![]() |
32.3 | 8 | 1. Zeichne den Funktionsgraphen in einem geeigneten Intervall. |
9 | [[image:Achsenkreuz.svg||width="600px"]] | ||
10 | 1. Berechne die Funktionswerte an den Stellen {{formula}}x=-3{{/formula}} und {{formula}}x=1{{/formula}}. | ||
11 | 1. Zeichne die Gerade {{formula}}g{{/formula}} durch die Punkte {{formula}}P_1(-3|-2){{/formula}} und {{formula}}P_2(1|6){{/formula}} ein. | ||
12 | 1. Berechne den Funktionsterm der Geraden {{formula}}g{{/formula}}. | ||
13 | 1. Ermittle den Bereich, in dem die Gerade über der {{formula}}x{{/formula}}-Achse verläuft. | ||
14 | 1. Bestimme den Funktionstern einer Geraden {{formula}}h{{/formula}}, die senkrecht auf der Geraden {{formula}}g{{/formula}} steht und einen gemeinsamen Punkt mit {{formula}}f{{/formula}} und {{formula}}g{{/formula}} hat. | ||
![]() |
31.2 | 15 | {{/aufgabe}} |
16 | |||
![]() |
32.3 | 17 | {{aufgabe id="Wurzelfunktion" afb="II" zeit="15" kompetenzen="K4,K5" tags="" quelle="Torben Würth" cc="BY-SA"}} |
![]() |
26.2 | 18 | Gegeben ist die Funktion {{formula}}f(x)=x^{\frac{2}{6}} {{/formula}} |
![]() |
32.3 | 19 | 1. Gib den Funktionsterm in vereinfachter Schreibweise an. |
20 | 1. Gib den Funktionsterm als Wurzelfunktion an. | ||
21 | 1. Bestimme die maximale Definitionsmenge sowie den Wertebereich. | ||
22 | 1. Zeichne die Funktion mit Hilfe einer Wertetabelle in einem geeigneten Intervall. | ||
23 | |||
![]() |
26.7 | 24 | ((((% class="border" style="width:100%" %) |
![]() |
26.8 | 25 | |={{formula}}x{{/formula}}| | | | | | | | | | | | | | | | | | |
26 | |={{formula}}f(x){{/formula}}|||||||||||||||||| | ||
![]() |
26.7 | 27 | ))) |
![]() |
26.9 | 28 | [[image:Achsenkreuz.svg||width="600px"]] |
![]() |
26.2 | 29 | {{/aufgabe}} |
30 | |||
![]() |
25.1 | 31 | {{aufgabe id="Gitterpunkte" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} |
![]() |
31.1 | 32 | Legt man **rechtwinklige Dreiecke** mit den einer waagerechten Katheten {{formula}} a {{/formula}} und senkrechten Katheten {{formula}}b{{/formula}} so auf ein quadratisches Gitter, dass alle drei Eckpunkte auf einem Gitterpunkt landen, dann befindet sich bei manchen dieser Dreiecke **kein einziger** Gitterpunkt auf der **Hypotenuse**. |
![]() |
2.1 | 33 | |
![]() |
17.1 | 34 | Schüler*in 1 behauptet: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} gibt es {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}}\frac{a\cdot b}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. |
35 | |||
![]() |
30.1 | 36 | Schüler*in 2 hält dagegen: Bei einem solchen rechtwinkligen Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}} b {{/formula}} gibt es {{formula}} a + b - 1 {{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. |
![]() |
17.1 | 37 | |
38 | Analysiere und überprüfe die vier genannten Formeln (% style="color:red" %) (und vervollständige für die beiden korrekten Formeln jeweils den Lösungsweg). | ||
39 | |||
![]() |
1.1 | 40 | {{lehrende}} |
![]() |
17.1 | 41 | **Variante 1:** Offene Aufgabenstellung für den Unterricht/größere Klassenarbeitsaufgabe: |
42 | Finde für solche Dreiecke allgemeine Formeln, mit denen sich | ||
43 | * die Anzahl der Gitterpunkte auf dem **Rand** | ||
44 | * die Anzahl der Gitterpunkte im **Inneren des Dreiecks in Abhängigkeit von der Länge** der beiden **Katheten** bestimmen lässt. | ||
![]() |
4.1 | 45 | //Der horizontale/vertikale Abstand der Gitterpunkte beträgt eine Längeneinheit (1 LE).// |
![]() |
1.1 | 46 | |
![]() |
17.1 | 47 | **Variante 2:** Kleinere Klassenarbeitsaufgabe, Richtigkeit der Lösung nachweisen |
![]() |
1.1 | 48 | Jemand behauptet: Ein solches rechtwinkliges Dreieck mit Katheten der Länge {{formula}} a {{/formula}} und {{formula}}b{{/formula}} besitzt {{formula}}a + b + 1{{/formula}} Gitterpunkte auf dem Rand und {{formula}} \frac{(a-1)\cdot (b-1)}{2}{{/formula}} Gitterpunkte im Inneren des Dreiecks. |
49 | Zeige, dass diese Behauptung richtig ist. | ||
50 | {{/lehrende}} | ||
51 | {{/aufgabe}} | ||
![]() |
7.1 | 52 | |
![]() |
25.1 | 53 | {{aufgabe id="Verbindungsstrecken von Eckpunkten" afb="III" zeit="20" kompetenzen="K2, K5, K4" tags="problemlösen" quelle="Problemlösegruppe" cc="BY-SA"}} |
![]() |
7.1 | 54 | Die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines Vielecks werden Diagonalen genannt. |
![]() |
8.1 | 55 | |
![]() |
7.1 | 56 | Ella und Jan haben ausgehend von einem 9-Eck zwei verschiedene Wege gefunden, um die Anzahl der Diagonalen zu berechnen: |
57 | |||
58 | Ella: {{formula}} 6 + 6 + 5 + 4 + 3 + 2 + 1 = 27{{/formula}} | ||
59 | Jan: {{formula}} \frac{9 \cdot 6}{2}{{/formula}} | ||
![]() |
18.1 | 60 | |
![]() |
7.1 | 61 | Wie sind Ella und Jan auf ihre Formeln gekommen? Analysiere und vergleiche die beiden Lösungsbeispiele. |
![]() |
18.1 | 62 | |
![]() |
7.1 | 63 | Übertrage beide Formeln für das 9-Eck auf eine allgemeine Formel für das n-Eck. |
![]() |
18.1 | 64 | |
65 | {{lehrende}} | ||
66 | **Variante 1:** Offene Aufgabe für den Unterricht & für die Klassenarbeit | ||
67 | Wie viele Diagonalen hat ein n-Eck? | ||
![]() |
7.1 | 68 | {{/lehrende}} |
![]() |
17.1 | 69 | {{/aufgabe}} |
![]() |
12.1 | 70 | |
![]() |
26.1 | 71 | {{aufgabe id="Fussball" afb="III" zeit="20" kompetenzen="K2, K5" tags="problemlösen" quelle="Problemlösegruppe" cc=""}} |
![]() |
17.1 | 72 | |
![]() |
21.1 | 73 | Inmitten von wie vielen Fußbällen sitzen Franz Beckenbauer und Oliver Bierhoff hier im Borussia-Park von Mönchengladbach? |
![]() |
17.1 | 74 | |
75 | Die Spielfläche wurde vor der WM 2006 zu PR-Zwecken von 320 Mitarbeitern einer großen deutschen Bank komplett mit Fußbällen belegt. | ||
76 | |||
77 | 1. Gib an, welche Größen du zur Lösung dieser Aufgabe benötigst. Schätze diese realistisch ab und berechne die Anzahl der Fußbälle. | ||
78 | 1. Erläutere, ob man auf derselben Fläche noch mehr Fußbälle unterbringen könnte. Wenn ja, skizziere eine mögliche Anordnung und gib möglichst genau an, wie viel Prozent mehr Fußbälle das sind. | ||
![]() |
7.1 | 79 | {{/aufgabe}} |
![]() |
19.1 | 80 | |
81 | {{seitenreflexion/}} | ||
82 |