Lösung Element von

Zuletzt geändert von Holger Engels am 2025/08/06 18:30

\(\mathbb{N}\)\(\mathbb{N}_0\)\(\mathbb{Z}^-\)\(\mathbb{Z}_+\)\(\mathbb{Z}\)\(\mathbb{Q}^-\)\(\mathbb{Q}^+\)\(\mathbb{Q}\)\(\mathbb{R}^-\)\(\mathbb{R}^+\)\(\mathbb{R}\)
 \(\frac{3}{4}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(\frac{-4}{5}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)
 \(-\frac{6}{5}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)
 \(\frac{10}{2}=5\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(4\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(0\)\(\,\)\(\times\)\(\,\)\(\,\)\(\times\)\(\,\)\(\,\)\(\times\)\(\,\)\(\,\)\(\times\)
 \(-6\)\(\,\)\(\,\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)
 \(\sqrt[4]{16}=2\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(\sqrt{4}=2\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(\sqrt{5}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\times\)
 \((-3)^5=-243\)\(\,\)\(\,\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)
 \(3^{-1}=\frac{1}{3}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \((-2)^{-2}=\frac{1}{4}\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)
 \(tan 45^{o}=1\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)\(\,\)\(\times\)\(\times\)