Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 109.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:00
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 110.1
bearbeitet von Martin Rathgeb
am 2025/01/05 15:03
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -70,10 +70,10 @@
70 70  [[image:Einheitsuebergreifend2.png||width="400px"]]
71 71  
72 72  (% class="abc" %)
73 -1. Löse die Gleichungen jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm //x(y)// in //y//.
74 -1. Führe in den in a) berechneten Termen //x(y))// den Variablentausch durch, zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
75 -1. Die in a) berechneten Terme //x(y)// sind insbesondere in Monotonieintervallen von {{formula}}f{{/formula}} Funktionsterme von Umkehrfunktionen {{formula}}f^{-1}{{/formula}}. Untersuche die Ausdrücke {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für //y// einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
76 -1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen //f// (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
73 +1. Löse die Gleichungen jeweils nach {{formula}}x{{/formula}} auf; du erhältst damit für {{formula}}x{{/formula}} einen Funktionsterm {{formula}}x(y){{/formula}} in {{formula}}y{{/formula}}.
74 +1. Führe in den in a) berechneten Termen {{formula}}x(y){{/formula}} den Variablentausch durch, zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
75 +1. Die in a) berechneten Terme {{formula}}x(y){{/formula}} sind insbesondere in Monotonieintervallen von {{formula}}f{{/formula}} Funktionsterme von Umkehrfunktionen {{formula}}f^{-1}{{/formula}}. Untersuche die Ausdrücke {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für {{formula}}y{{/formula}} einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
76 +1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen {{formula}}f{{/formula}} (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
77 77  {{/aufgabe}}
78 78  
79 79  {{matrix/}}