Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 158.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:47
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 149.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:17
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,8 +1,6 @@
1 1  {{seiteninhalt/}}
2 2  
3 3  {{aufgabe id="Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}}
4 -Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel sind mitunter Funktionsgraphen von //Linearkombinationen// der drei Potenzfunktionen mit Grad {{formula}}\le 2{{/formula}}, nämlich Grad 0 (konstante Funktion mit {{formula}}y=1{{/formula}}), Grad 1 (proportionale Funktion mit {{formula}}y=x{{/formula}}) und Grad 2 (quadratische Funktion mit {{formula}}y=x^2{{/formula}}).
5 -
6 6  //Verfahren statt Formel// (Teil 1). Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze.
7 7  (% class="border slim" %)
8 8  |[[image:Po-ShenLoh_Quadratic.png||width="600px"]]
... ... @@ -10,9 +10,6 @@
10 10  //Verfahren statt Formel// (Teil 2). In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor.
11 11  (% class="border slim" %)
12 12  |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}}
13 -
14 -//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln.
15 -
16 16  (% class="abc" %)
17 17  1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung.
18 18  1. {{formula}}f(x)=x^2-7x+12{{/formula}}
... ... @@ -28,11 +28,12 @@
28 28  {{/aufgabe}}
29 29  
30 30  {{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}}
26 +IN PROGRESS
31 31  (% class="abc" %)
32 32  1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
33 33  (% class="border slim" %)
34 34  | |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
35 -|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
31 +|{{formula}}y=\square (x-1)(x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KoorSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
36 36  | |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
37 37  
38 38  )))