Änderungen von Dokument BPE 2 Einheitsübergreifend
Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03
Von Version 179.1
bearbeitet von Martin Rathgeb
am 2025/01/07 20:32
am 2025/01/07 20:32
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Auf Version 159.1
bearbeitet von Martin Rathgeb
am 2025/01/07 00:56
am 2025/01/07 00:56
Änderungskommentar:
Es gibt keinen Kommentar für diese Version
Zusammenfassung
-
Seiteneigenschaften (1 geändert, 0 hinzugefügt, 0 gelöscht)
Details
- Seiteneigenschaften
-
- Inhalt
-
... ... @@ -1,7 +1,34 @@ 1 1 {{seiteninhalt/}} 2 2 3 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}} 3 +{{aufgabe id="Darstellungswechsel nach Po-Shen Loh" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="20"}} 4 +Die Normalparabel ist Funktionsgraph //der// quadratischen Potenzfunktion. Transformationen (vgl. Merkhilfe, S. 4) der Normalparabel liefern Funktionsgraphen mit Parabelgleichung in Scheitelform. Ausmultiplizieren liefert die zugehörige Hauptform, das ist zumeist eine //Linearkombination// der drei Potenzfunktionen vom Grad {{formula}}\le 2{{/formula}}: die konstante Funktion mit {{formula}}y=1{{/formula}} (die Potenzfunktion vom Grad 0)), proportionale Funktion mit {{formula}}y=x{{/formula}} (die Potenzfunktion vom Grad 1) und quadratische Funktion mit {{formula}}y=x^2{{/formula}} (die Potenzfunktion vom Grad 2)). Der Darstellungswechsel zur Produktform ist schwieriger. 5 + 6 +//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 7 +(% class="border slim" %) 8 +|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 9 + 10 +//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 11 +(% class="border slim" %) 12 +|{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] | [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] {{formula}}\quad{{/formula}} 13 + 14 +//Anmerkung//. Der Kern des Verfahrens ist die Symmetrisierung: Die //zwei// Nullstellen weichen nämlich von der Hälfte ihrer Summe (das ist die x-Koordinate {{formula}}x_S{{/formula}} des Scheitels) um den gleichen Wert {{formula}}u{{/formula}} (das ist die Diskriminante, an der sich die Lösbarkeit der Gleichung erkennen lässt) nach oben bzw. unten ab. Ausgehend von ihrem Produkt lässt sich diese //eine// Abweichung {{formula}}u{{/formula}} infolge der dritten binomischen Formel als Lösung einer //rein-quadratischen// Gleichung ermitteln. 15 + 4 4 (% class="abc" %) 17 +1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) die Produktform der Funktionsgleichung. 18 +1. {{formula}}f(x)=x^2-7x+12{{/formula}} 19 +1. {{formula}}f(x)=x^2-14x+22{{/formula}} 20 +1. {{formula}}f(x)=x^2-7x+12{{/formula}} 21 +1. {{formula}}f(x)=x^2-8x+13{{/formula}} 22 +1. {{formula}}f(x)=x^2+6x-4{{/formula}} 23 +1. {{formula}}f(x)=2x^2-4x-5 {{/formula}} 24 + 25 +))) 26 +1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 27 +//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 28 +{{/aufgabe}} 29 + 30 +{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="8"}} 31 +(% class="abc" %) 5 5 1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken. 6 6 (% class="border slim" %) 7 7 | |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} | ... ... @@ -22,67 +22,31 @@ 22 22 ))) 23 23 {{/aufgabe}} 24 24 25 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}} 52 +{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K2, K4" quelle="Martin Rathgeb" cc="BY-SA" zeit="12"}} 53 +IN PROGRESS 26 26 In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3. 27 27 (% class="border slim" %) 28 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 29 29 |Hauptform |{{formula}}y=ax^2+bx+c{{/formula}} 57 +|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}} 30 30 |Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}} 31 31 |Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}} 32 32 33 -Es gelten folgende Beziehungen zwischen den Parametern, wobei 34 - 35 -{{formula}} 36 -\[ 37 -\begin{array}{|c|l|l|l|} 38 -\hline 39 -\textbf{Nr.} & \textbf{Von} & \textbf{Zu} & \textbf{Beziehungen} \\ 40 -\hline 41 -1 & \text{Scheitelform} & \text{pq-Form} & p = -2x_S, \, q = x_S^2 + y_S^* \\ 42 -\hline 43 -2 & \text{pq-Form} & \text{Scheitelform} & x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q \\ 44 -\hline 45 -3 & \text{Scheitelform} & \text{Produktform} & x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*} \\ 46 -\hline 47 -4 & \text{pq-Form} & \text{Produktform} & x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q} \\ 48 -\hline 49 -5 & \text{Produktform} & \text{pq-Form} & p = -(x_1 + x_2), \, q = x_1 x_2 \\ 50 -\hline 51 -6 & \text{Produktform} & \text{Scheitelform} & x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4} \\ 52 -\hline 53 -\end{array} 54 -\] 55 -{{/formula}} 56 - 57 -//Verfahren statt Formel (Teil 1)//. Unter der Überschrift "A Simple Proof of the Quadratic Formula" (2019) veröffentlichte Po-Shen Loh einen Aufsatz (https://arxiv.org/abs/1910.06709) über eine Methode für den Darstellungswechsel zwischen //Hauptform// und //Produktform// einer quadratischen Funktion; seine Methode kombiniert auf bislang vielleicht unbekannte Weise altbekannte Ansätze. 58 -(% class="border slim" %) 59 -|[[image:Po-ShenLoh_Quadratic.png||width="600px"]] 60 - 61 -//Verfahren statt Formel (Teil 2)//. In seinem Video "Examples: A Different Way to Solve Quadrativ Equations" (https://youtu.be/XKBX0r3J-9Y?si=1RPiGiHEDIs1KFRU) stellt er seine Methode zur Lösung quadratischer Gleichungen zunächst an Beispielen und weiter allgemein vor. 62 -(% class="border slim" %) 63 -|[[image:Po-ShenLoh_Quadratic_Example.png||height="200px"]] {{formula}}\quad{{/formula}} |{{formula}}\quad{{/formula}} [[image:Po-ShenLoh_Quadratic_Proof.png||height="200px"]] 64 -|(Video 27:00)|(Video 33:11) 65 - 66 66 (% class="abc" %) 67 -1. (((Seine dortigen Beispiele mögen hier der Übung des Darstellungswechsels dienen. Ermittle (falls möglich) aus der gegebenen Hauptform die //Produktform//. Folge in Vorgehen und Darstellung obigen Beispielen (dem konkreten und dem allgemeinen). 68 -1. {{formula}}y=x^2-7x+12{{/formula}} 69 -1. {{formula}}y=x^2-14x+24{{/formula}} 70 -1. {{formula}}y=x^2-8x+13{{/formula}} 71 -1. {{formula}}y=x^2+6x-4{{/formula}} 72 -1. {{formula}}y=2x^2-4x-5 {{/formula}} 73 -1. {{formula}}y=3x^2-7x+12{{/formula}} 62 +1. (((Ermittle für jede Gleichungsform {{formula}}\ldots{{/formula}} 63 +1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die beiden //Winkelhalbierenden// (besondere Geraden) darstellen lassen. 64 +1. {{formula}}\ldots{{/formula}}, ob (und ggf. wie) sich die //Parallelen zu den Koordinatenachsen// (Typen besonderer Geraden) darstellen lassen. 65 +1. {{formula}}\ldots{{/formula}}, welche Werte charakteristischer Größen von {{formula}}g{{/formula}} sich direkt ablesen lassen; vgl. dazu vorausgegangenes Arithmagon. 74 74 75 75 ))) 76 -1. ((( Begründe,dass gilt:77 - i. {{formula}}\frac{b}{a}=p{{/formula}} und{{formula}}\frac{c}{a}=q{{/formula}}78 - ii. {{formula}}2x_S=x_1+x_2=-p{{/formula}}und{{formula}}x_1\cdotx_2=q{{/formula}}79 - iii.{{formula}}x_S=\frac{x_1+x_2}{2}=\frac{-p}{2}{{/formula}} und {{formula}}y_S=f(x_S){{/formula}}68 +1. (((Erläutere, inwiefern {{formula}}\ldots{{/formula}} 69 +1. {{formula}}\ldots{{/formula}} die //Hauptform// und die //Produktform// zwei Spezialfälle der //Punkt-Steigungs-Form// sind. 70 +1. {{formula}}\ldots{{/formula}} nur die //Allgemeine Form// diese Bezeichnung mit Recht trägt; vgl. dazu a). 71 + 80 80 ))) 81 -1. Ermittle zu den in a) gegebenen Hauptformen der Parabelgleichungen die Scheitelformen. 82 -1. Zeige, dass die (zur Gleichung kondensierte) Methode die pq-Formel liefert. 83 -//Anmerkung//. Dies wird am Ende des Videos gezeigt; weiter wird aus der pq-Formel die abc-Formel hergeleitet. 73 +1. Berechne aus den Parametern {{formula}}x_0, y_0{{/formula}} der Achsenabschnittsform die Steigung {{formula}}m{{/formula}}. 84 84 {{/aufgabe}} 85 85 76 + 86 86 {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}} 87 87 Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt. 88 88