Änderungen von Dokument BPE 2 Einheitsübergreifend

Zuletzt geändert von Martin Rathgeb am 2025/01/12 20:03

Von Version 186.2
bearbeitet von Martin Rathgeb
am 2025/01/07 21:24
Änderungskommentar: Es gibt keinen Kommentar für diese Version
Auf Version 106.2
bearbeitet von Martin Rathgeb
am 2025/01/05 14:45
Änderungskommentar: Es gibt keinen Kommentar für diese Version

Zusammenfassung

Details

Seiteneigenschaften
Inhalt
... ... @@ -1,62 +1,5 @@
1 1  {{seiteninhalt/}}
2 2  
3 -{{aufgabe id="Arithmagon Darstellungsformen" afb="II" kompetenzen="K2, K4, K5" tags="problemlösen" quelle="Martin Rathgeb" cc="BY-SA" zeit="10"}}
4 -(% class="abc" %)
5 -1. (((Fülle in folgenden Darstellungsformen einer Parabel die Lücken.
6 -(% class="border slim" %)
7 -| |{{formula}}y=\square \cdot (x-3)^2+\square{{/formula}} |
8 -|{{formula}}y=\square \cdot (x-1)\cdot (x-\square){{/formula}} |Graph: nach unten geöffnete Parabel in KooSyS ohne Skalierung |{{formula}}y=\square x^2+\square x+\square{{/formula}}
9 -| |{{formula}}y=\square 2\cdot (x^2+\square x+\square){{/formula}} |
10 -
11 -)))
12 -1. (((Nenne die Werte der charakteristischen Größen der Parabel:
13 -1. (((//Lage//.
14 -i. Scheitel {{formula}}S(x_S|y_S){{/formula}} mit Symmetrieachse {{formula}}g{{/formula}} der Parabel
15 -ii. x-Achsenabschnitte {{formula}}x_1, x_2{{/formula}} mit x-Achsenschnittpunkten {{formula}}N_1, N_2{{/formula}}
16 -iii. y-Achsenabschnitt {{formula}}c{{/formula}} mit y-Achsenschnittpunkt {{formula}}S_y{{/formula}}
17 -)))
18 -1. (((//Kovariation//.
19 -i. Steigung {{formula}}b{{/formula}} an der Stelle {{formula}}x=0{{/formula}}
20 -ii. Krümmung {{formula}}a{{/formula}}
21 -)))
22 -)))
23 -{{/aufgabe}}
24 -
25 -{{aufgabe id="Formen von Parabelgleichungen" afb="II" kompetenzen="K1, K5, K6" quelle="Martin Rathgeb" cc="BY-SA" zeit="30"}}
26 -In der Literatur werden folgende Formen der Parabelgleichung unterschieden, wobei {{formula}}S(x_S|y_S){{/formula}} der Scheitel der Parabel sei; vgl. Merkhilfe, S. 3.
27 -(% class="border" %)
28 -|Scheitelform |{{formula}}y=a(x-x_S)^2 + y_S{{/formula}}
29 -|Hauptform |{{formula}}y=ax^2+bx+c{{/formula}}
30 -|Produktform |{{formula}}y=a(x-x_1)(x-x_2){{/formula}}
31 -|Gestreckte Normalform |{{formula}}}y=a(x^2+px+q){{/formula}}
32 -
33 -Zwischen den Parametern gelten folgende Beziehungen, wobei die Kurz-Bezeichnung {{formula}}}y_S^*=\frac{y_S^*}{a}{{/formula}} verwendet wurde.
34 -
35 -(% class="border" %)
36 -|Nr. |Von |Zu |Beziehungen
37 -|1 |Scheitelform |pq-Form |{{formula}}p = -2x_S, \, q = x_S^2 + y_S^*{{/formula}}
38 -|2 |pq-Form |Scheitelform |{{formula}}x_S = -\frac{p}{2}, \, y_S^* = -\frac{p^2}{4} + q{{/formula}}
39 -|3 |Scheitelform |Produktform |{{formula}}x_1 = x_S - \sqrt{-y_S^*}, \, x_2 = x_S + \sqrt{-y_S^*}{{/formula}}
40 -|4 |pq-Form |Produktform |{{formula}}x_1 = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, \, x_2 = -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}{{/formula}}
41 -|5 |Produktform |pq-Form |{{formula}}p = -(x_1 + x_2), \, q = x_1 x_2{{/formula}}
42 -|6 |Produktform |Scheitelform |{{formula}}x_S = \frac{x_1 + x_2}{2}, \, y_S^* = -\frac{(x_2 - x_1)^2}{4}{{/formula}}
43 -
44 -(% class="abc" %)
45 -1. //Formeln anwenden//. Ergänze die Leerstellen in folgender Tabelle.
46 -(% class="border" %)
47 -|Nr. |Hauptform |Scheitelform |Produktform
48 -|1 |{{formula}}y = x^2 - 4x + 3{{/formula}} | |
49 -|2 | |{{formula}}y = (x - 1)^2 + 4{{/formula}} |
50 -|3 | | |{{formula}}y = (x + 2)(x + 2){{/formula}}
51 -|4 |{{formula}}y = -(x^2 - 4x + 1){{/formula}} | |
52 -|5 | |{{formula}}y = -\pi(x - \pi)^2{{/formula}} |
53 -|6 | | |{{formula}}y = -(x + 1 - \sqrt{2})(x + 1 + \sqrt{2}){{/formula}}
54 -|7 |{{formula}}y = 2(x^2 + 2x + 5){{/formula}} | |
55 -|8 | |{{formula}}y = -\frac{3}{2}(x - 2)^2{{/formula}} |
56 -|9 | | |{{formula}}y = \sqrt{2}(x - 2)(x - 3){{/formula}}
57 -1. //Formeln begründen//. Zeige die Beziehungen zwischen den Parametern; vgl. obige Tabelle.
58 -{{/aufgabe}}
59 -
60 60  {{aufgabe id="Weg zur Schule" afb="I" kompetenzen="K1,K3,K4" quelle="Ute Jutt, Ronja Franke" cc="BY-SA" zeit="20"}}
61 61  Kay möchte die Laufzeit für den Weg vom Bahnhof zur Schule berechnen. Die Laufzeit wird modelliert durch die Funktion {{formula}}t{{/formula}} mit {{formula}}t(v)= \frac{d}{v}{{/formula}} (Geschwindigkeit {{formula}}v{{/formula}} in km/min; Entfernung {{formula}}d{{/formula}} in km; Laufzeit {{formula}}t(v){{/formula}} in min). Eine Messung hat ergeben, dass die Schule vom Bahnhof 5 km entfernt liegt.
62 62  
... ... @@ -121,16 +121,16 @@
121 121  
122 122  {{aufgabe id="Spiegeln an der Winkelhalbierenden" afb="III" kompetenzen="K4" quelle="Niklas Wunder, Martin Rathgeb" zeit="12" cc="BY-SA"}}
123 123  Graphische Transformationen gehören zu den Grundwerkzeugen der Mathematik. Neben der Verschiebung und der Streckung in Richtung einer Koordinatenachse bzw. der Spiegelung an einer Koordinatenachse gibt es eine weitere besondere Transformation, nämlich die //Spiegelung an der ersten Winkelhalbierenden//, das ist die Gerade mit der Gleichung {{formula}}y=x{{/formula}}. Diese Spiegelung bewirkt den Koordinatentausch {{formula}}(x|y)\mapsto (y|x){{/formula}}, d.h., die Umkehrung {{formula}}y\mapsto x{{/formula}} der Zuordnung {{formula}}x\mapsto y{{/formula}}.
124 -Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}, ein Funktionsgraph) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}, kein Funktionsgraph); das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}, ein Funktionsgraph) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen (kein Funktionsgraph). Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die Gleichung {{formula}}y=x^2{{/formula}} nach {{formula}}x{{/formula}} auf und tauscht dann in der erhaltenen Gleichung {{formula}}x=\pm \sqrt{y}{{/formula}} noch die Variablen gegeneinander aus ({{formula}}y=\pm \sqrt{x}{{/formula}}).
67 +Dazu drei Beispiele: Das Spiegelbild der positiv orientierten x-Achse ({{formula}}y=0{{/formula}}, ein Funktionsgraph) ist die positiv orientierte y-Achse ({{formula}}x=0{{/formula}}, kein Funktionsgraph); das Spiegelbild der positiv orientierten y-Achse wiederum ist die positiv orientierte x-Achse; das Spiegelbild der Normalparabel ({{formula}}y=x^2{{/formula}}, ein Funktionsgraph) sind die beiden Wurzeläste ({{formula}}y=\pm \sqrt{x}{{/formula}}) zusammengenommen (kein Funktionsgraph). Betrachten wir das dritte Beispiel genauer: Um aus der Gleichung {{formula}}y=x^2{{/formula}} rechnerisch die Gleichung {{formula}}y=\pm \sqrt{x}{{/formula}} zu ermitteln, löst man zunächst die erste Gleichung nach //x// auf, {{formula}}x=\pm \sqrt{y}{{/formula}}, und tauscht dann in dieser Gleichung die Variablen //x// und //y// gegenseitig aus, also {{formula}}y=\pm \sqrt{x}{{/formula}}.
125 125  
126 -Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Funktionsgraphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.
69 +Betrachte nun die folgenden drei Gleichungen zu den nachfolgenden Graphen: {{formula}}y=2x{{/formula}}, {{formula}}y=(x+2)^2{{/formula}} und {{formula}}y=x^3{{/formula}}.
127 127  [[image:Einheitsuebergreifend2.png||width="400px"]]
128 128  
129 129  (% class="abc" %)
130 -1. Löse die Gleichungen jeweils nach {{formula}}x{{/formula}} auf; du erhältst damit für {{formula}}x{{/formula}} einen Funktionsterm {{formula}}x(y){{/formula}} in {{formula}}y{{/formula}}.
131 -1. Führe in den in a) berechneten Termen {{formula}}x(y){{/formula}} den Variablentausch durch, zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
132 -1. Die in a) berechneten Terme {{formula}}x(y){{/formula}} sind insbesondere in Monotonieintervallen von {{formula}}f{{/formula}} Funktionsterme von Umkehrfunktionen {{formula}}f^{-1}{{/formula}}. Untersuche die Ausdrücke {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für {{formula}}y{{/formula}} einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
133 -1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen {{formula}}f{{/formula}} (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
73 +1. Löse die Gleichung jeweils nach //x// auf; du erhältst damit für //x// einen Funktionsterm in //y//.
74 +1. Zeichne die Graphen der Umkehrungen zusätzlich ins Koordinatensystem ein und untersuche, wie die Paare von Graphen zur ersten Winkelhalbierenden liegen.
75 +1. Die in a) berechneten Terme sind die Funktionsterme von Umkehrfunktionen ({{formula}}f^{-1}{{/formula}}) von Funktionen {{formula}}f{{/formula}}. Untersuche jeweils den Ausdruck {{formula}}f^{-1}(y){{/formula}}, indem du {{formula}}f(x){{/formula}} für //y// einsetzt, und beschreibe, was dir (an der jeweiligen Vereinfachung) auffällt.
76 +1. Abschließend stellt sich die Frage: Weshalb der Definitionsbereich der Funktionen //f// (z.B. auf ein Monotonieintervall) verkleinert werden muss, um eine Umkehrfunktion zu erhalten? Begründe diese Einschränkung mit den Ergebnissen aus a) und b).
134 134  {{/aufgabe}}
135 135  
136 136  {{matrix/}}
Po-ShenLoh_Quadratic.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -98.4 KB
Inhalt
Po-ShenLoh_Quadratic_Example.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -828.1 KB
Inhalt
Po-ShenLoh_Quadratic_Proof.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.martinrathgeb
Größe
... ... @@ -1,1 +1,0 @@
1 -612.4 KB
Inhalt